Table 17.1, page 447.
use https://stats.idre.ucla.edu/stat/stata/examples/cama4/depress, clear gen incomecat = 0 replace incomecat = 1 if income >= 20 tab2 sex incomecat | incomecat sex | 0 1 | Total -----------+----------------------+---------- male | 54 57 | 111 female | 125 58 | 183 -----------+----------------------+---------- Total | 179 115 | 294
Table 17.2, page 448.
table treat sex incomecat -------------------------------------------- has a | doctor | prescribe | d or | recommend | ed that | you take | medicine, | incomecat and sex medical | ------ 0 ----- ------ 1 ----- treatment | male female male female ----------+--------------------------------- yes | 20 73 21 34 no | 34 52 36 24 --------------------------------------------
Table 17.3, page 449.
gen cesdcat = 0 replace cesdcat = 1 if cesd >=11 table treat sex incomecat, by(cesdcat) -------------------------------------------- cesdcat | and has a | doctor | prescribe | d or | recommend | ed that | you take | medicine, | incomecat and sex medical | ------ 0 ----- ------ 1 ----- treatment | male female male female ----------+--------------------------------- 0 | yes | 16 48 16 20 no | 23 33 30 20 ----------+--------------------------------- 1 | yes | 4 25 5 14 no | 11 19 6 4 --------------------------------------------
Page 451 middle of the page.
NOTE: You will need to download the tabchi ado, which can be installed by typing search tabchi in the command line (see How can I use the search command to search for programs and get additional help? for more information about using search).
tabchi sex incomecat observed frequency expected frequency ---------------------------- | incomecat sex | 0 1 ----------+----------------- male | 54 57 | 67.582 43.418 | female | 125 58 | 111.418 71.582 ---------------------------- Pearson chi2(1) = 11.2104 Pr = 0.001 likelihood-ratio chi2(1) = 11.1467 Pr = 0.001
Page 454. Ttop of the page.
tab2 sex incomecat, chi2 | incomecat sex | 0 1 | Total -----------+----------------------+---------- male | 54 57 | 111 female | 125 58 | 183 -----------+----------------------+---------- Total | 179 115 | 294 Pearson chi2(1) = 11.2104 Pr = 0.001
Table 17.7, page 455.
NOTE: The xi3 program needs to be downloaded and installed. You can use the search command to find the program and follow the directions given for downloading and installing it (see How can I use the search command to search for programs and get additional help? for more information about using search).
collapse (count) id, by(sex incomecat) rename id count recode sex 1=0 2=1 xi3: glm count d.sex*d.incomecat, fam(pois) d.sex _Isex_0-1 (naturally coded; _Isex_0 omitted) d.incomecat _Iincomecat_0-1 (naturally coded; _Iincomecat_0 omitted) d.sex*d.incom~t _IsexXinc_#_# (coded as above) Iteration 0: log likelihood = -12.201957 Iteration 1: log likelihood = -12.14127 Iteration 2: log likelihood = -12.141259 Iteration 3: log likelihood = -12.141259 Generalized linear models No. of obs = 4 Optimization : ML: Newton-Raphson Residual df = 0 Scale param = 1 Deviance = 4.44089e-16 (1/df) Deviance = . Pearson = 1.72033e-27 (1/df) Pearson = . Variance function: V(u) = u [Poisson] Link function : g(u) = ln(u) [Log] Standard errors : OIM Log likelihood = -12.14125876 AIC = 8.070629 BIC = 4.44089e-16 ------------------------------------------------------------------------------ count | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- _Isex_1 | .2141804 .061899 3.46 0.001 .0928606 .3355001 _Iincomeca~1 | -.1784509 .061899 -2.88 0.004 -.2997707 -.0571311 _IsexXinc_~1 | -.2054845 .061899 -3.32 0.001 -.3268043 -.0841647 _cons | 4.230198 .061899 68.34 0.000 4.108878 4.351518 ------------------------------------------------------------------------------
Page 461.
use "c:cama4depress.dta", clear gen incomecat = 0 replace incomecat = 1 if income >= 20 (115 real changes made) collapse (count) beddays, by(sex incomecat treat ) rename beddays count
NOTE: These are in the reverse order so that the subtraction is done correctly. The lrtest commands give the likelihood ratio tests and the display commands give the Pearson tests. To determine the number of degrees of freedom shown in the display chi2tail commands, you need to subtract the number of degrees of freedom for the two models in the comparison.
xi3: glm count sex*incomecat*treat, fam(poi) This is an experimental version of xi3 Please view results with some caution Iteration 0: log likelihood = -21.561163 Iteration 1: log likelihood = -21.421271 Iteration 2: log likelihood = -21.421201 Iteration 3: log likelihood = -21.421201 Generalized linear models No. of obs = 8 Optimization : ML: Newton-Raphson Residual df = 0 Scale param = 1 Deviance = 1.44329e-14 (1/df) Deviance = . Pearson = 8.09169e-24 (1/df) Pearson = . Variance function: V(u) = u [Poisson] Link function : g(u) = ln(u) [Log] Standard errors : OIM Log likelihood = -21.42120107 AIC = 7.3553 BIC = 1.44329e-14 ------------------------------------------------------------------------------ count | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- sex | 2.164571 .5508512 3.93 0.000 1.084923 3.24422 incomecat | .8358518 1.422674 0.59 0.557 -1.952538 3.624242 treat | 1.400472 .592095 2.37 0.018 .2399874 2.560957 _IseXin | -.7954299 .8252301 -0.96 0.335 -2.412851 .8219915 _IseXtr | -.869844 .3351733 -2.60 0.009 -1.526772 -.2129163 _IinXtr | .0258275 .8504365 0.03 0.976 -1.640997 1.692652 _IseXinXtr | -.0174592 .50874 -0.03 0.973 -1.014571 .9796529 _cons | .3005329 .9958275 0.30 0.763 -1.651253 2.252319 ------------------------------------------------------------------------------ lrtest, saving(m0) xi3: glm count sex*incomecat sex*treat incomecat*treat, fam(poi) This is an experimental version of xi3 Please view results with some caution Iteration 0: log likelihood = -21.554923 Iteration 1: log likelihood = -21.42186 Iteration 2: log likelihood = -21.42179 Iteration 3: log likelihood = -21.42179 Generalized linear models No. of obs = 8 Optimization : ML: Newton-Raphson Residual df = 1 Scale param = 1 Deviance = .001177818 (1/df) Deviance = .0011778 Pearson = .0011777657 (1/df) Pearson = .0011778 Variance function: V(u) = u [Poisson] Link function : g(u) = ln(u) [Log] Standard errors : OIM Log likelihood = -21.42178998 AIC = 7.105447 BIC = -2.078263724 ------------------------------------------------------------------------------ count | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- sex | 2.176457 .4288301 5.08 0.000 1.335965 3.016948 incomecat | .8798374 .6176395 1.42 0.154 -.3307138 2.090389 _IseXin | -.8223852 .2533633 -3.25 0.001 -1.318968 -.3258023 treat | 1.413416 .4567266 3.09 0.002 .5182485 2.308584 _IseXtr | -.877427 .252167 -3.48 0.001 -1.371665 -.3831887 _IinXtr | -.0020759 .2493924 -0.01 0.993 -.490876 .4867242 _cons | .2799075 .7951472 0.35 0.725 -1.278552 1.838367 ------------------------------------------------------------------------------ lrtest, using(m0) Glm: likelihood-ratio test chi2(1) = 0.00 Prob > chi2 = 0.9726 di .0011777657 - 0 .00117777 di chi2tail(1, .00117777) .97262305 lrtest, saving(m1) glm count sex incomecat treat, fam(poi) Iteration 0: log likelihood = -33.613736 Iteration 1: log likelihood = -33.459453 Iteration 2: log likelihood = -33.459367 Iteration 3: log likelihood = -33.459367 Generalized linear models No. of obs = 8 Optimization : ML: Newton-Raphson Residual df = 4 Scale param = 1 Deviance = 24.07633241 (1/df) Deviance = 6.019083 Pearson = 24.6518747 (1/df) Pearson = 6.162969 Variance function: V(u) = u [Poisson] Link function : g(u) = ln(u) [Log] Standard errors : OIM Log likelihood = -33.45936727 AIC = 9.364842 BIC = 15.75856624 ------------------------------------------------------------------------------ count | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- sex | .499956 .1203058 4.16 0.000 .2641609 .735751 incomecat | -.4424537 .1195083 -3.70 0.000 -.6766857 -.2082216 treat | -.0136057 .1166451 -0.12 0.907 -.2422258 .2150145 _cons | 3.040618 .2723247 11.17 0.000 2.506872 3.574365 ------------------------------------------------------------------------------ di 24.6518747 - .0011777657 24.650697 di chi2tail(3, 24.650697) .00001827 lrtest, using(m1) Glm: likelihood-ratio test chi2(3) = 24.08 Prob > chi2 = 0.0000 lrtest, saving(m2) glm count, fam(poi) Iteration 0: log likelihood = -49.483935 Iteration 1: log likelihood = -49.394894 Iteration 2: log likelihood = -49.394881 Iteration 3: log likelihood = -49.394881 Generalized linear models No. of obs = 8 Optimization : ML: Newton-Raphson Residual df = 7 Scale param = 1 Deviance = 55.94736055 (1/df) Deviance = 7.99248 Pearson = 61.31972823 (1/df) Pearson = 8.759961 Variance function: V(u) = u [Poisson] Link function : g(u) = ln(u) [Log] Standard errors : OIM Log likelihood = -49.39488135 AIC = 12.59872 BIC = 41.39126976 ------------------------------------------------------------------------------ count | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- _cons | 3.604138 .0583212 61.80 0.000 3.489831 3.718446 ------------------------------------------------------------------------------ lrtest, using(m2) Glm: likelihood-ratio test chi2(3) = 31.87 Prob > chi2 = 0.0000 di 61.31972823 - 24.6518747 36.667854 di chi2tail(3, 36.667854) 5.409e-08
Page 462 table in the middle of the page.
NOTE: The first poisson and lrtest commands are used to calculate and save the model to which the other three models will be compared. We have used the quietly command to suppress the output of the poisson command, as it is not needed.
Partial association:
quietly xi3: poisson count sex*treat incomecat*treat sex*incomecat lrtest, saving(m0) quietly xi3: poisson count sex*treat incomecat*treat incomecat lrtest, using(m0) Poisson: likelihood-ratio test chi2(1) = 10.67 Prob > chi2 = 0.0011 quietly xi3: poisson count sex*treat incomecat*sex incomecat lrtest, using(m0) Poisson: likelihood-ratio test chi2(1) = 0.00 Prob > chi2 = 0.9934 quietly xi3: poisson count sex*incomecat incomecat*treat incomecat lrtest, using(m0) Poisson: likelihood-ratio test chi2(1) = 12.45 Prob > chi2 = 0.0004
Marginal association:
tabchi sex incomecat [weight=count] (frequency weights assumed) observed frequency expected frequency ---------------------------- | incomecat sex | 0 1 ----------+----------------- male | 54 57 | 67.582 43.418 | female | 125 58 | 111.418 71.582 ---------------------------- Pearson chi2(1) = 11.2104 Pr = 0.001 likelihood-ratio chi2(1) = 11.1467 Pr = 0.001 tabchi sex treat [weight=count] (frequency weights assumed) observed frequency expected frequency -------------------------- | has a doctor | prescribed or | recommended | that you take | medicine, | medical | treatment sex | yes no ----------+--------------- male | 41 70 | 55.878 55.122 | female | 107 76 | 92.122 90.878 -------------------------- Pearson chi2(1) = 12.8149 Pr = 0.000 likelihood-ratio chi2(1) = 12.9284 Pr = 0.000 tabchi incomecat treat [weight=count] (frequency weights assumed) observed frequency expected frequency -------------------------- | has a doctor | prescribed or | recommended | that you take | medicine, | medical | treatment incomecat | yes no ----------+--------------- 0 | 93 86 | 90.109 88.891 | 1 | 55 60 | 57.891 57.109 -------------------------- Pearson chi2(1) = 0.4776 Pr = 0.490 likelihood-ratio chi2(1) = 0.4777 Pr = 0.489
Page 464 table in the middle of the page.
NOTE: For the first four entries in the table, the poisson command can be used to generate the likelihood ratio chi-squared. For the rest of the table, the lrtest command provides the entries in the table. We have used the quietly command for the corresponding poisson command to suppress the output, as we are only interested in the output of the lrtest commands.
The first-order terms:
poisson count incomecat Iteration 0: log likelihood = -86.914684 Iteration 1: log likelihood = -86.914684 Poisson regression Number of obs = 16 LR chi2(1) = 14.04 Prob > chi2 = 0.0002 Log likelihood = -86.914684 Pseudo R2 = 0.0748 ------------------------------------------------------------------------------ count | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- incomecat | -.4424537 .1195083 -3.70 0.000 -.6766857 -.2082216 _cons | 3.107944 .0747435 41.58 0.000 2.96145 3.254439 ------------------------------------------------------------------------------ poisson count sex Iteration 0: log likelihood = -85.03012 Iteration 1: log likelihood = -85.03012 Poisson regression Number of obs = 16 LR chi2(1) = 17.81 Prob > chi2 = 0.0000 Log likelihood = -85.03012 Pseudo R2 = 0.0948 ------------------------------------------------------------------------------ count | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- sex | .499956 .1203058 4.16 0.000 .2641609 .735751 _cons | 2.130133 .2037168 10.46 0.000 1.730855 2.52941 ------------------------------------------------------------------------------ poisson count treat Iteration 0: log likelihood = -93.929955 Iteration 1: log likelihood = -93.929955 Poisson regression Number of obs = 16 LR chi2(1) = 0.01 Prob > chi2 = 0.9071 Log likelihood = -93.929955 Pseudo R2 = 0.0001 ------------------------------------------------------------------------------ count | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- treat | -.0136057 .1166451 -0.12 0.907 -.2422258 .2150145 _cons | 2.931376 .1840553 15.93 0.000 2.570635 3.292118 ------------------------------------------------------------------------------ poisson count cesdcat Iteration 0: log likelihood = -69.575822 Iteration 1: log likelihood = -69.575808 Iteration 2: log likelihood = -69.575808 Poisson regression Number of obs = 16 LR chi2(1) = 48.72 Prob > chi2 = 0.0000 Log likelihood = -69.575808 Pseudo R2 = 0.2593 ------------------------------------------------------------------------------ count | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- cesdcat | -.8505394 .1273499 -6.68 0.000 -1.100141 -.6009381 _cons | 3.248435 .0696733 46.62 0.000 3.111877 3.384992 ------------------------------------------------------------------------------
The second-order terms:
NOTE: The first lrtest is used to save the model to which all of the other models in this section will be compared.
quietly xi3: poisson count sex*treat sex*incomecat sex*cesdcat treat*incomecat /// treat*cesdcat incomecat*cesdcat lrtest, saving(m2) quietly poisson count sex treat incomecat cesdcat _IseXtr _IseXce _ItrXin _ItrXce _IinXce lrtest, using(m2) Poisson: likelihood-ratio test chi2(1) = 9.91 Prob > chi2 = 0.0016 quietly poisson count sex treat incomecat cesdcat _IseXtr _IseXin _IseXce _ItrXce _IinXce lrtest, using(m2) Poisson: likelihood-ratio test chi2(1) = 0.00 Prob > chi2 = 0.9653 quietly poisson count sex treat incomecat cesdcat _IseXtr _IseXin _IseXce _ItrXin _ItrXce lrtest, using(m2) Poisson: likelihood-ratio test chi2(1) = 1.17 Prob > chi2 = 0.2799 quietly poisson count sex treat incomecat cesdcat _IseXin _IseXce _ItrXin _ItrXce _IinXce lrtest, using(m2) Poisson: likelihood-ratio test chi2(1) = 11.98 Prob > chi2 = 0.0005 quietly poisson count sex treat incomecat cesdcat _IseXtr _IseXin _ItrXin _ItrXce _IinXce lrtest, using(m2) Poisson: likelihood-ratio test chi2(1) = 2.34 Prob > chi2 = 0.1259 quietly poisson count sex treat incomecat cesdcat _IseXtr _IseXce _IseXin _ItrXin _IinXce lrtest, using(m2) Poisson: likelihood-ratio test chi2(1) = 0.32 Prob > chi2 = 0.5733
Third-order terms:
quietly xi3: poisson count sex*treat*incomecat sex*treat*cesdcat /// sex*incomecat*cesdcat treat*incomecat*cesdcat lrtest, saving(m3) quietly poisson count sex treat incomecat cesdcat _IseXin _IseXtr _IseXce _ItrXin _ItrXce _IinXce /// _IseXtrXce _IseXinXce _ItrXinXce lrtest, using(m3) Poisson: likelihood-ratio test chi2(1) = 0.01 Prob > chi2 = 0.9274 quietly poisson count sex treat incomecat cesdcat _IseXin _IseXtr _IseXce _ItrXin _ItrXce _IinXce /// _IseXtrXin _IseXtrXce _ItrXinXce lrtest, using(m3) Poisson: likelihood-ratio test chi2(1) = 0.01 Prob > chi2 = 0.9205 quietly poisson count sex treat incomecat cesdcat _IseXin _IseXtr _IseXce _ItrXin _ItrXce _IinXce /// _IseXtrXin _IseXtrXce _IseXinXce lrtest, using(m3) Poisson: likelihood-ratio test chi2(1) = 4.74 Prob > chi2 = 0.0294 quietly poisson count sex treat incomecat cesdcat _IseXin _IseXtr _IseXce _ItrXin _ItrXce _IinXce /// _IseXtrXin _IseXinXce _ItrXinXce lrtest, using(m3) Poisson: likelihood-ratio test chi2(1) = 1.23 Prob > chi2 = 0.2680
Page 468.
use https://stats.idre.ucla.edu/stat/stata/examples/cama4/depress, clear gen incomecat = 0 replace incomecat = 1 if income >= 20 collapse (count) id, by(sex incomecat treat) rename id count recode sex 2=0 recode treat 2=0 recode incomecat 0=1 1= 0 xi3: glm count d.sex*d.treat d.treat*d.incomecat d.sex*d.incomecat, fam(pois) d.sex _Isex_0-1 (naturally coded; _Isex_0 omitted) d.treat _Itreat_0-1 (naturally coded; _Itreat_0 omitted) d.incomecat _Iincomecat_0-1 (naturally coded; _Iincomecat_0 omitted) Iteration 0: log likelihood = -21.554923 Iteration 1: log likelihood = -21.42186 Iteration 2: log likelihood = -21.42179 Iteration 3: log likelihood = -21.42179 Generalized linear models No. of obs = 8 Optimization : ML: Newton-Raphson Residual df = 1 Scale param = 1 Deviance = .001177818 (1/df) Deviance = .0011778 Pearson = .0011777657 (1/df) Pearson = .0011778 Variance function: V(u) = u [Poisson] Link function : g(u) = ln(u) [Log] Standard errors : OIM Log likelihood = -21.42178998 AIC = 7.105447 BIC = -2.078263724 ------------------------------------------------------------------------------ count | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- _Isex_1 | -.2245618 .0635601 -3.53 0.000 -.3491373 -.0999863 _Itreat_1 | -.0481189 .0627327 -0.77 0.443 -.1710728 .0748349 _Ise1Xtr1 | -.2193567 .0630417 -3.48 0.001 -.3429163 -.0957972 _Iincomeca~1 | .1784271 .0619647 2.88 0.004 .0569785 .2998757 _Itr1Xin1 | -.000519 .0623481 -0.01 0.993 -.122719 .1216811 _Ise1Xin1 | -.2055963 .0633408 -3.25 0.001 -.329742 -.0814506 _cons | 3.512079 .0635747 55.24 0.000 3.387475 3.636683 ------------------------------------------------------------------------------
Page 470 top of the page.
use https://stats.idre.ucla.edu/stat/stata/examples/cama4/depress, clear gen treat1 = treat - 1 gen sex1 = sex -1 logit treat1 sex1 incomecat =Iteration 0: log likelihood = -203.77847 Iteration 1: log likelihood = -197.31646 Iteration 2: log likelihood = -197.31424 Logit estimates Number of obs = 294 LR chi2(2) = 12.93 Prob > chi2 = 0.0016 Log likelihood = -197.31424 Pseudo R2 = 0.0317 ------------------------------------------------------------------------------ treat1 | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- sex1 | -.877427 .2521666 -3.48 0.001 -1.371664 -.3831895 incomecat | -.0020759 .2493921 -0.01 0.993 -.4908755 .4867237 _cons | .5359893 .2347028 2.28 0.022 .0759804 .9959983 ------------------------------------------------------------------------------