Part of table 12.1, page 323. The variable index corresponds to the row value in table 12.1.
use https://stats.idre.ucla.edu/stat/stata/examples/chp/p323, clear generate index = _n list in f/5 y x1 x2 x3 index 1. 0 -62.8 -89.5 1.7 1 2. 0 3.3 -3.5 1.1 2 3. 0 -120.8 -103.2 2.5 3 4. 0 -18.1 -28.8 1.1 4 5. 0 -3.8 -50.6 .9 5 list in -5/l y x1 x2 x3 index 62. 1 53.1 7.1 1.9 62 63. 1 39.8 13.8 1.2 63 64. 1 59.5 7 2 64 65. 1 16.3 20.4 1 65 66. 1 21.7 -7.8 1.6 66
Page 324, table 12.2.
Note: The first logit command displays the results as coefficients while the second logit command with the or option displays the results as odds ratios.
logit y x1 x2 x3 Logit estimates Number of obs = 66 LR chi2(3) = 85.68 Prob > chi2 = 0.0000 Log likelihood = -2.9064524 Pseudo R2 = 0.9365 ------------------------------------------------------------------------------ y | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- x1 | .3312468 .3007071 1.102 0.271 -.2581284 .9206219 x2 | .1808756 .1069197 1.692 0.091 -.0286831 .3904344 x3 | 5.087464 5.081626 1.001 0.317 -4.87234 15.04727 _cons | -10.15345 10.8389 -0.937 0.349 -31.3973 11.0904 ------------------------------------------------------------------------------ Note: 17 failures and 10 successes completely determined. logit, or Logit estimates Number of obs = 66 LR chi2(3) = 85.68 Prob > chi2 = 0.0000 Log likelihood = -2.9064524 Pseudo R2 = 0.9365 ------------------------------------------------------------------------------ y | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- x1 | 1.392703 .4187958 1.102 0.271 .7724961 2.510851 x2 | 1.198266 .1281183 1.692 0.091 .9717243 1.477623 x3 | 161.9786 823.1147 1.001 0.317 .0076554 3427251 ------------------------------------------------------------------------------ Note: 17 failures and 10 successes completely determined.
Logistic regression diagnostics, page 325.
predict p /* predicted probabilities */ predict pr, rstandard /* standardized Personian residuals */ (10 missing values generated) predict dr, deviance /* deviance residuals */ predict pstar, hat /* leverage */ predict dbeta, dbeta /* DBETA */ (10 missing values generated) predict dg, dx2 /* change in chi-square when observation deleted */ (10 missing values generated)
Figures 12.2, 12.3 and 12.4, pages 326 and 327.
Note: Observations 9 and 52 appear to be problematic; however, observation 36 does not appear problematic, differing from the figures in the book.
sort index graph twoway (scatter dr index) (scatter dr index if abs(dr) >= 1, mlabel(index)), /// ylabel(-1.5(.75).75) xlabel(15(15)60)
graph twoway (scatter dbeta index) (scatter dbeta index if abs(dbeta) >= 2, mlabel(index)), /// xlabel(15(15)60)
graph twoway (scatter dg index) (scatter dg index if abs(dg) >= 2, mlabel(index)), /// xlabel(15(15)60)
Likelihood ratio test, page 327 and table 12.3, page 328.
lrtest, saving (0) logit y x1 x2 Logit estimates Number of obs = 66 LR chi2(2) = 82.02 Prob > chi2 = 0.0000 Log likelihood = -4.7359473 Pseudo R2 = 0.8965 ------------------------------------------------------------------------------ y | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- x1 | .1573639 .0749183 2.100 0.036 .0105267 .3042011 x2 | .1947428 .1224281 1.591 0.112 -.0452119 .4346974 _cons | -.5503398 .9509818 -0.579 0.563 -2.41423 1.31355 ------------------------------------------------------------------------------ Note: 11 failures and 0 successes completely determined. lrtest Logit: likelihood-ratio test chi2(1) = 3.66 Prob > chi2 = 0.0558
Likelihood ratio test, page 328 and table 12.4, page 328.
lrtest, saving(1) logit y x1 Logit estimates Number of obs = 66 LR chi2(1) = 75.69 Prob > chi2 = 0.0000 Log likelihood = -7.9015445 Pseudo R2 = 0.8273 ------------------------------------------------------------------------------ y | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- x1 | .1767191 .0571025 3.095 0.002 .0648004 .2886379 _cons | -1.166587 .8163989 -1.429 0.153 -2.7667 .4335252 ------------------------------------------------------------------------------ Note: 9 failures and 0 successes completely determined. lrtest, using(1) Logit: likelihood-ratio test chi2(1) = 6.33 Prob > chi2 = 0.0119
Table 12.5, page 331.
regress y x1 x2 x3 Source | SS df MS Number of obs = 66 ---------+------------------------------ F( 3, 62) = 27.38 Model | 9.40333712 3 3.13444571 Prob > F = 0.0000 Residual | 7.09666288 62 .114462305 R-squared = 0.5699 ---------+------------------------------ Adj R-squared = 0.5491 Total | 16.50 65 .253846154 Root MSE = .33832 ------------------------------------------------------------------------------ y | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- x1 | .0031216 .0008294 3.764 0.000 .0014637 .0047795 x2 | .0042457 .0014367 2.955 0.004 .0013737 .0071177 x3 | .1485037 .0453154 3.277 0.002 .0579195 .2390878 _cons | .3218658 .0874576 3.680 0.000 .1470407 .496691 ------------------------------------------------------------------------------
Table 12.6, page 332.
Note: the command generate a = p >= .5 creates a new variable a which has the value 1 if p is greater or equal to .5 and 0 otherwise.
predict p generate a = p >= .5 list y p a y p a 1. 0 -.0017021 0 2. 0 .4806612 0 3. 0 -.122117 0 4. 0 .3064435 0 5. 0 .2288255 0 6. 0 .1446737 0 7. 0 .3331264 0 8. 0 -.320569 0 9. 0 .517042 1 10. 0 .1161951 0 11. 0 .2255089 0 12. 0 -.0724799 0 13. 0 -.8029544 0 14. 0 .545396 1 15. 0 .0301355 0 16. 0 -.4522537 0 17. 0 .6364052 1 18. 0 .4545762 0 19. 0 .437882 0 20. 0 .1398092 0 21. 0 .2249177 0 22. 0 .3714215 0 23. 0 .1800966 0 24. 0 .0519476 0 25. 0 .5541553 1 26. 0 .5563999 1 27. 0 .394581 0 28. 0 .3399023 0 29. 0 .3882431 0 30. 0 .262901 0 31. 0 .3894134 0 32. 0 .117767 0 33. 0 .4403123 0 34. 1 .7187779 1 35. 1 .8186681 1 36. 1 .7295072 1 37. 1 .8015884 1 38. 1 .6547927 1 39. 1 .7962746 1 40. 1 .7478317 1 41. 1 .7593519 1 42. 1 .8322027 1 43. 1 1.099869 1 44. 1 1.420885 1 45. 1 .8599006 1 46. 1 .657912 1 47. 1 .8058342 1 48. 1 .5835429 1 49. 1 .9690604 1 50. 1 1.029698 1 51. 1 .7686977 1 52. 1 .4763457 0 53. 1 .5957797 1 54. 1 .7405336 1 55. 1 .8092653 1 56. 1 .8389035 1 57. 1 .6227317 1 58. 1 .8070596 1 59. 1 .7396857 1 60. 1 .843024 1 61. 1 .8565065 1 62. 1 .7999232 1 63. 1 .6828997 1 64. 1 .8343272 1 65. 1 .6078632 1 66. 1 .5940937 1