Note: The generate command is used to add an id number to the observations.
use https://stats.idre.ucla.edu/stat/stata/examples/chp/p124 generate id = _n
Table 5.1, page 124.
list s x e m 1. 13876 1 1 1 2. 11608 1 3 0 3. 18701 1 3 1 4. 11283 1 2 0 5. 11767 1 3 0 6. 20872 2 2 1 7. 11772 2 2 0 8. 10535 2 1 0 9. 12195 2 3 0 10. 12313 3 2 0 .. [remainder of output omitted]
Create dummy coding for variable e.
Note 1: tabulate with the generate option creates dummy coded variables.
Note 2: The tab1 command produces one-way frequency tables for a series of variables.
tabulate e, generate(e) E | Freq. Percent Cum. ------------+----------------------------------- 1 | 14 30.43 30.43 2 | 19 41.30 71.74 3 | 13 28.26 100.00 ------------+----------------------------------- Total | 46 100.00 tab1 e1 e2 e3 -> tabulation of e1 e== | 1.0000 | Freq. Percent Cum. ------------+----------------------------------- 0 | 32 69.57 69.57 1 | 14 30.43 100.00 ------------+----------------------------------- Total | 46 100.00 -> tabulation of e2 e== | 2.0000 | Freq. Percent Cum. ------------+----------------------------------- 0 | 27 58.70 58.70 1 | 19 41.30 100.00 ------------+----------------------------------- Total | 46 100.00 -> tabulation of e3 e== | 3.0000 | Freq. Percent Cum. ------------+----------------------------------- 0 | 33 71.74 71.74 1 | 13 28.26 100.00 ------------+----------------------------------- Total | 46 100.00
Table 5.3, page 126.
regress s x e1 e2 m Source | SS df MS Number of obs = 46 ---------+------------------------------ F( 4, 41) = 226.84 Model | 957816858 4 239454214 Prob > F = 0.0000 Residual | 43280719.5 41 1055627.30 R-squared = 0.9568 ---------+------------------------------ Adj R-squared = 0.9525 Total | 1.0011e+09 45 22246612.8 Root MSE = 1027.4 ------------------------------------------------------------------------------ s | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- x | 546.184 30.51919 17.896 0.000 484.5493 607.8188 e1 | -2996.21 411.7527 -7.277 0.000 -3827.762 -2164.659 e2 | 147.8249 387.6593 0.381 0.705 -635.0689 930.7188 m | 6883.531 313.919 21.928 0.000 6249.559 7517.503 _cons | 11031.81 383.2171 28.787 0.000 10257.89 11805.73 ------------------------------------------------------------------------------
Figure 5.1, page 127. The rvpplot2 can be downloaded within Stata by typing search rvpplot2 (see How can I use the search command to search for programs and get additional help? for more information about using search).
rvpplot2 x, rstudent xlabel(4(4)20) ylabel(-2(1)1)
Figure 5.2, page 128.
Note 1: The egen command was used with the group function to produce the six categories of education and management.
Note 2: The xlabel(1(1)6) option produces labels on the x-axis from 1 to 6 by ones.
egen c = group(e m) predict sr, rstandard graph twoway scatter sr c, ylabel(-2(1)1) xlabel(1(1)6)
Table 5.4, page 129.
generate e1m = e1*m generate e2m = e2*m regress s x e1 e2 m e1m e2m Source | SS df MS Number of obs = 46 ---------+------------------------------ F( 6, 39) = 5516.60 Model | 999919409 6 166653235 Prob > F = 0.0000 Residual | 1178167.86 39 30209.4324 R-squared = 0.9988 ---------+------------------------------ Adj R-squared = 0.9986 Total | 1.0011e+09 45 22246612.8 Root MSE = 173.81 ------------------------------------------------------------------------------ s | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- x | 496.987 5.566415 89.283 0.000 485.7279 508.2461 e1 | -1730.748 105.3339 -16.431 0.000 -1943.806 -1517.69 e2 | -349.0777 97.5679 -3.578 0.001 -546.4274 -151.728 m | 7047.412 102.5892 68.695 0.000 6839.906 7254.918 e1m | -3066.035 149.3304 -20.532 0.000 -3368.084 -2763.986 e2m | 1836.488 131.1674 14.001 0.000 1571.177 2101.799 _cons | 11203.43 79.06545 141.698 0.000 11043.51 11363.36 ------------------------------------------------------------------------------
Figure 5.3, page 129.
rvpplot2 x, rstandard xlabel(4(4)20) ylabel(-6(1.5)1.5)
Table 5.5, page 129.
drop if id==33 (1 observation deleted) regress s x e1 e2 m e1m e2m Source | SS df MS Number of obs = 45 ---------+------------------------------ F( 6, 38) =35427.96 Model | 957607113 6 159601186 Prob > F = 0.0000 Residual | 171188.12 38 4504.95052 R-squared = 0.9998 ---------+------------------------------ Adj R-squared = 0.9998 Total | 957778301 44 21767688.7 Root MSE = 67.119 ------------------------------------------------------------------------------ s | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- x | 498.4178 2.151688 231.640 0.000 494.0619 502.7736 e1 | -1741.336 40.6825 -42.803 0.000 -1823.693 -1658.979 e2 | -357.0423 37.68114 -9.475 0.000 -433.3237 -280.7608 m | 7040.58 39.61907 177.707 0.000 6960.376 7120.785 e1m | -3051.763 57.6742 -52.914 0.000 -3168.519 -2935.008 e2m | 1997.531 51.78498 38.574 0.000 1892.697 2102.364 _cons | 11199.71 30.53338 366.802 0.000 11137.9 11261.53 ------------------------------------------------------------------------------
Figure 5.4, page 130.
rvpplot2 x, rstandard xlabel(4(4)20) ylabel(-2(1)2)
Figure 5.5, page 130.
drop sr predict sr, rstandard graph twoway scatter sr c, ylabel(-2(1)1) xlabel(1(1)6)
Table 5.6, page 131.
Note: There are small differences between table 5.6 in the book and the one generated by Stata due to rounding.
adjust x=0, by(m e) se ci format(%5.0f) ------------------------------------------------------------------------------- Dependent variable: s Command: regress Variables left as is: e1, e2, e1m, e2m Covariate set to value: x = 0 ------------------------------------------------------------------------------- ----------+-------------------------------------------- | E M | 1 2 3 ----------+-------------------------------------------- 0 | 9458 10843 11200 | (31) (26) (31) | [9396,9521] [10790,10896] [11138,11262] | 1 | 13447 19881 18240 | (32) (33) (29) | [13383,13511] [19814,19947] [18183,18298] ----------+--------------------------------------------
Use the data file p134 and create interaction variable.
use https://stats.idre.ucla.edu/stat/stata/examples/chp/p134, clear generate rbyt = race*test
Table 5.8, page 135.
regress jperf test Source | SS df MS Number of obs = 20 ---------+------------------------------ F( 1, 18) = 19.25 Model | 48.7229625 1 48.7229625 Prob > F = 0.0004 Residual | 45.5682959 18 2.531572 R-squared = 0.5167 ---------+------------------------------ Adj R-squared = 0.4899 Total | 94.2912585 19 4.96269781 Root MSE = 1.5911 ------------------------------------------------------------------------------ jperf | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- test | 2.360535 .5380699 4.387 0.000 1.230092 3.490978 _cons | 1.034973 .8680312 1.192 0.249 -.7886928 2.858639 ------------------------------------------------------------------------------
Figure 5.7, page 135.
rvpplot2 test, rstandard ylabel(-2(1)1) xlabel(.75 1.5 2.25)
Figure 5.9, page 137.
predict sr, rstandard graph twoway scatter sr race, ylabel(-2(1)1) xlabel(0 1)
Table 5.9, page 135.
regress jperf test race rbyt Source | SS df MS Number of obs = 20 ---------+------------------------------ F( 3, 16) = 10.55 Model | 62.6357847 3 20.8785949 Prob > F = 0.0005 Residual | 31.6554738 16 1.97846711 R-squared = 0.6643 ---------+------------------------------ Adj R-squared = 0.6013 Total | 94.2912585 19 4.96269781 Root MSE = 1.4066 ------------------------------------------------------------------------------ jperf | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- test | 1.313402 .6703711 1.959 0.068 -.1077208 2.734525 race | -1.913167 1.540325 -1.242 0.232 -5.178509 1.352176 rbyt | 1.997546 .954443 2.093 0.053 -.0257831 4.020875 _cons | 2.010282 1.050112 1.914 0.074 -.2158562 4.236421 ------------------------------------------------------------------------------
Figure 5.8, page 135.
rvpplot2 test, rstandard ylabel(-2(1)1) xlabel(.75 1.5 2.25)
Part of Table 5.10, page 136.
regress jperf test if race==1 Source | SS df MS Number of obs = 10 ---------+------------------------------ F( 1, 8) = 28.14 Model | 46.9895716 1 46.9895716 Prob > F = 0.0007 Residual | 13.3568411 8 1.66960513 R-squared = 0.7787 ---------+------------------------------ Adj R-squared = 0.7510 Total | 60.3464126 9 6.70515696 Root MSE = 1.2921 ------------------------------------------------------------------------------ jperf | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- test | 3.310948 .6241062 5.305 0.001 1.871757 4.75014 _cons | .0971152 1.035193 0.094 0.928 -2.290043 2.484274 ------------------------------------------------------------------------------ ------------------------------------------------------------------------------
Figure 5.10, page 137.
rvpplot2 test, rstandard ylabel(-1.5(.75).75) xlabel(.75 1.5 2.25)
Remainder of Table 5.10, page 136.
regress jperf test if race==0 Source | SS df MS Number of obs = 10 ---------+------------------------------ F( 1, 8) = 3.32 Model | 7.5944073 1 7.5944073 Prob > F = 0.1059 Residual | 18.2986327 8 2.28732909 R-squared = 0.2933 ---------+------------------------------ Adj R-squared = 0.2050 Total | 25.89304 9 2.87700445 Root MSE = 1.5124 ------------------------------------------------------------------------------ jperf | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- test | 1.313402 .7208006 1.822 0.106 -.3487669 2.975572 _cons | 2.010282 1.129108 1.780 0.113 -.5934463 4.614011 ------------------------------------------------------------------------------
Figure 5.11, page 137.
rvpplot2 test, rstandard ylabel(-1.5(.75).75) xlabel(.8(.4)2.4)