The data files used for the examples in this text can be downloaded in a zip file from the Stata Web site. You can then use a program such as zip to unzip the data files.
Example 10.4 on page 261 using jtrain1.dta.
use jtrain1, clear xtreg lscrap d88 d89 union grant grant_1, i( fcode) Random-effects GLS regression Number of obs = 162 Group variable (i): fcode Number of groups = 54 R-sq: within = 0.2006 Obs per group: min = 3 between = 0.0206 avg = 3.0 overall = 0.0361 max = 3 Random effects u_i ~ Gaussian Wald chi2(5) = 26.99 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0001 ------------------------------------------------------------------------------ lscrap | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- d88 | -.0934519 .1091559 -0.86 0.392 -.3073937 .1204898 d89 | -.2698336 .1316496 -2.05 0.040 -.527862 -.0118052 union | .5478021 .410625 1.33 0.182 -.2570081 1.352612 grant | -.214696 .1477838 -1.45 0.146 -.504347 .0749549 grant_1 | -.3770698 .2053516 -1.84 0.066 -.7795515 .0254119 _cons | .4148333 .2434322 1.70 0.088 -.0622851 .8919518 -------------+---------------------------------------------------------------- sigma_u | 1.3900287 sigma_e | .49774421 rho | .88634984 (fraction of variance due to u_i) ------------------------------------------------------------------------------ test grant grant_1 ( 1) grant = 0 ( 2) grant_1 = 0 chi2( 2) = 3.66 Prob > chi2 = 0.1601
Example 10.5 on page 272 using jtrain1.dta.
xtreg lscrap d88 d89 union grant grant_1, i( fcode) fe Fixed-effects (within) regression Number of obs = 162 Group variable (i): fcode Number of groups = 54 R-sq: within = 0.2010 Obs per group: min = 3 between = 0.0079 avg = 3.0 overall = 0.0068 max = 3 F(4,104) = 6.54 corr(u_i, Xb) = -0.0714 Prob > F = 0.0001 ------------------------------------------------------------------------------ lscrap | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- d88 | -.0802157 .1094751 -0.73 0.465 -.297309 .1368776 d89 | -.2472028 .1332183 -1.86 0.066 -.5113797 .0169741 union | (dropped) grant | -.2523149 .150629 -1.68 0.097 -.5510178 .0463881 grant_1 | -.4215895 .2102 -2.01 0.047 -.8384239 -.0047551 _cons | .5974341 .0677344 8.82 0.000 .4631142 .7317539 -------------+---------------------------------------------------------------- sigma_u | 1.438982 sigma_e | .49774421 rho | .89313867 (fraction of variance due to u_i) ------------------------------------------------------------------------------ F test that all u_i=0: F(53, 104) = 23.87 Prob > F = 0.0000 test grant grant_1 ( 1) grant = 0 ( 2) grant_1 = 0 F( 2, 104) = 2.23 Prob > F = 0.1127
Example 10.5 (continued) on page 276.
Notice that Stata does not calculate the robust standard errors for fixed effect models.
Example 10.6 on page 282 using jtrain1.dta.
use jtrain1, clear tsset fcode year panel variable: fcode, 410032 to 419486 time variable: year, 1987 to 1989 reg d.lscrap d89 d.grant d.grant_1 Source | SS df MS Number of obs = 108 -------------+------------------------------ F( 3, 104) = 1.31 Model | 1.31104125 3 .43701375 Prob > F = 0.2739 Residual | 34.5904876 104 .332600842 R-squared = 0.0365 -------------+------------------------------ Adj R-squared = 0.0087 Total | 35.9015288 107 .335528307 Root MSE = .57672 ------------------------------------------------------------------------------ D.lscrap | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- d89 | -.0962081 .1254469 -0.77 0.445 -.344974 .1525578 grant | D1 | -.222781 .1307423 -1.70 0.091 -.482048 .0364859 grant_1 | D1 | -.3512459 .2350848 -1.49 0.138 -.817428 .1149362 _cons | -.0906072 .0909695 -1.00 0.322 -.2710032 .0897888 ------------------------------------------------------------------------------ test d.grant d.grant_1 ( 1) D.grant = 0 ( 2) D.grant_1 = 0 F( 2, 104) = 1.53 Prob > F = 0.2215
Example 10.6 (continued) on page 283.
reg d.lscrap d89 d.grant d.grant_1 Source | SS df MS Number of obs = 108 -------------+------------------------------ F( 3, 104) = 1.31 Model | 1.31104125 3 .43701375 Prob > F = 0.2739 Residual | 34.5904876 104 .332600842 R-squared = 0.0365 -------------+------------------------------ Adj R-squared = 0.0087 Total | 35.9015288 107 .335528307 Root MSE = .57672 ------------------------------------------------------------------------------ D.lscrap | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- d89 | -.0962081 .1254469 -0.77 0.445 -.344974 .1525578 grant | D1 | -.222781 .1307423 -1.70 0.091 -.482048 .0364859 grant_1 | D1 | -.3512459 .2350848 -1.49 0.138 -.817428 .1149362 _cons | -.0906072 .0909695 -1.00 0.322 -.2710032 .0897888 ------------------------------------------------------------------------------ predict u, res (363 missing values generated) reg u l.u Source | SS df MS Number of obs = 54 -------------+------------------------------ F( 1, 52) = 3.10 Model | .971328577 1 .971328577 Prob > F = 0.0844 Residual | 16.3125173 52 .313702256 R-squared = 0.0562 -------------+------------------------------ Adj R-squared = 0.0380 Total | 17.2838459 53 .3261103 Root MSE = .56009 ------------------------------------------------------------------------------ u | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- u | L1 | .2369063 .1346333 1.76 0.084 -.0332551 .5070678 _cons | 3.30e-10 .0762188 0.00 1.000 -.1529441 .1529442 ------------------------------------------------------------------------------