The data files used for the examples in this text can be downloaded in a zip file from the Stata Web site. You can then use a program such as zip to unzip the data files.
Example 18.2 on page 619 using jtrain2.dta.
use jtrain2, clear probit train re74 re75 age agesq nodegree married black hisp, nolog Probit estimates Number of obs = 445 LR chi2(8) = 16.07 Prob > chi2 = 0.0415 Log likelihood = -294.06748 Pseudo R2 = 0.0266 ------------------------------------------------------------------------------ train | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- re74 | -.0189577 .0159392 -1.19 0.234 -.0501979 .0122825 re75 | .0371871 .0271086 1.37 0.170 -.0159447 .090319 age | -.0005467 .0534045 -0.01 0.992 -.1052176 .1041242 agesq | .0000719 .0008734 0.08 0.934 -.0016399 .0017837 nodegree | -.44195 .1515457 -2.92 0.004 -.7389742 -.1449258 married | .091519 .1726192 0.53 0.596 -.2468083 .4298464 black | -.1446253 .2271609 -0.64 0.524 -.5898524 .3006019 hisp | -.5004545 .3079227 -1.63 0.104 -1.103972 .1030629 _cons | .2284561 .8154273 0.28 0.779 -1.369752 1.826664 ------------------------------------------------------------------------------ predict propensity, p reg re78 train propensity Source | SS df MS Number of obs = 445 -------------+------------------------------ F( 2, 442) = 5.00 Model | 432.165422 2 216.082711 Prob > F = 0.0071 Residual | 19093.4912 442 43.1979439 R-squared = 0.0221 -------------+------------------------------ Adj R-squared = 0.0177 Total | 19525.6566 444 43.9767041 Root MSE = 6.5725 ------------------------------------------------------------------------------ re78 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- train | 1.625741 .6436153 2.53 0.012 .360815 2.890668 propensity | 4.74316 3.398343 1.40 0.163 -1.935758 11.42208 _cons | 2.65396 1.421591 1.87 0.063 -.1399571 5.447877 ------------------------------------------------------------------------------ reg re78 train re74 re75 age agesq nodegree married black hisp Source | SS df MS Number of obs = 445 -------------+------------------------------ F( 9, 435) = 2.49 Model | 955.909613 9 106.212179 Prob > F = 0.0088 Residual | 18569.747 435 42.6890736 R-squared = 0.0490 -------------+------------------------------ Adj R-squared = 0.0293 Total | 19525.6566 444 43.9767041 Root MSE = 6.5337 ------------------------------------------------------------------------------ re78 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- train | 1.625166 .6399454 2.54 0.011 .3673965 2.882935 re74 | .0730643 .0775264 0.94 0.346 -.0793087 .2254373 re75 | .0651047 .1357642 0.48 0.632 -.2017307 .3319401 age | .2006381 .272712 0.74 0.462 -.3353589 .7366351 agesq | -.0025326 .0044565 -0.57 0.570 -.0112916 .0062264 nodegree | -1.099426 .7914955 -1.39 0.166 -2.655057 .4562048 married | -.1052808 .8930025 -0.12 0.906 -1.860417 1.649855 black | -2.115677 1.172482 -1.80 0.072 -4.42011 .188757 hisp | -.0095228 1.551503 -0.01 0.995 -3.058898 3.039852 _cons | 3.691303 4.180235 0.88 0.378 -4.524666 11.90727 ------------------------------------------------------------------------------ reg re78 train /*simple comparison*/ Source | SS df MS Number of obs = 445 -------------+------------------------------ F( 1, 443) = 8.04 Model | 348.013451 1 348.013451 Prob > F = 0.0048 Residual | 19177.6432 443 43.2903909 R-squared = 0.0178 -------------+------------------------------ Adj R-squared = 0.0156 Total | 19525.6566 444 43.9767041 Root MSE = 6.5795 ------------------------------------------------------------------------------ re78 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- train | 1.794343 .6328536 2.84 0.005 .5505749 3.038111 _cons | 4.554802 .408046 11.16 0.000 3.752856 5.356749 ------------------------------------------------------------------------------ sum propensity Variable | Obs Mean Std. Dev. Min Max -------------+-------------------------------------------------------- propensity | 445 .4155321 .0934459 .1638736 .6738951 gen wp = train*(propensity-r(mean)) reg re78 train propensity wp /*adding the interaction term*/ Source | SS df MS Number of obs = 445 -------------+------------------------------ F( 3, 441) = 4.61 Model | 593.815328 3 197.938443 Prob > F = 0.0034 Residual | 18931.8413 441 42.9293453 R-squared = 0.0304 -------------+------------------------------ Adj R-squared = 0.0238 Total | 19525.6566 444 43.9767041 Root MSE = 6.552 ------------------------------------------------------------------------------ re78 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- train | 1.554095 .6426726 2.42 0.016 .2910138 2.817177 propensity | -.9943707 4.496586 -0.22 0.825 -9.831772 7.84303 wp | 13.26973 6.838352 1.94 0.053 -.1700793 26.70954 _cons | 4.953301 1.847272 2.68 0.008 1.32275 8.583851 ------------------------------------------------------------------------------
Example 18.3 on page 624 using fertil2.dta.
use fertil2, clear reg children educ7 age agesq evermarr urban electric tv Source | SS df MS Number of obs = 4358 -------------+------------------------------ F( 7, 4350) = 880.03 Model | 12607.4006 7 1801.05723 Prob > F = 0.0000 Residual | 8902.63153 4350 2.04658196 R-squared = 0.5861 -------------+------------------------------ Adj R-squared = 0.5855 Total | 21510.0321 4357 4.93689055 Root MSE = 1.4306 ------------------------------------------------------------------------------ children | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- educ7 | -.3935524 .0495534 -7.94 0.000 -.4907024 -.2964025 age | .2719307 .0171033 15.90 0.000 .2383996 .3054618 agesq | -.001896 .0002752 -6.89 0.000 -.0024356 -.0013564 evermarr | .6947417 .0523984 13.26 0.000 .5920142 .7974691 urban | -.2437082 .0460252 -5.30 0.000 -.333941 -.1534753 electric | -.336644 .0754557 -4.46 0.000 -.4845756 -.1887124 tv | -.3259749 .0897716 -3.63 0.000 -.501973 -.1499767 _cons | -3.526605 .2451026 -14.39 0.000 -4.007131 -3.046079 ------------------------------------------------------------------------------
ivreg children (educ7 =frsthalf ) age agesq evermarr urban electric tv Instrumental variables (2SLS) regression Source | SS df MS Number of obs = 4358 -------------+------------------------------ F( 7, 4350) = 829.33 Model | 12154.5373 7 1736.36247 Prob > F = 0.0000 Residual | 9355.49483 4350 2.15068847 R-squared = 0.5651 -------------+------------------------------ Adj R-squared = 0.5644 Total | 21510.0321 4357 4.93689055 Root MSE = 1.4665 ------------------------------------------------------------------------------ children | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- educ7 | -1.13068 .6192352 -1.83 0.068 -2.344696 .0833367 age | .2627018 .01916 13.71 0.000 .2251385 .3002651 agesq | -.0019787 .0002905 -6.81 0.000 -.0025483 -.0014091 evermarr | .6167576 .0845468 7.29 0.000 .4510028 .7825123 urban | -.1672413 .0795281 -2.10 0.036 -.3231569 -.0113257 electric | -.2343255 .1154192 -2.03 0.042 -.460606 -.0080451 tv | -.1371643 .1829146 -0.75 0.453 -.4957701 .2214415 _cons | -2.83005 .6350035 -4.46 0.000 -4.07498 -1.58512 ------------------------------------------------------------------------------ Instrumented: educ7 Instruments: age agesq evermarr urban electric tv frsthalf ------------------------------------------------------------------------------ probit educ7 frsthalf age agesq evermarr urban electric tv, nolog Probit estimates Number of obs = 4358 LR chi2(7) = 1130.84 Prob > chi2 = 0.0000 Log likelihood = -2428.384 Pseudo R2 = 0.1889 ------------------------------------------------------------------------------ educ7 | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- frsthalf | -.2206627 .0418563 -5.27 0.000 -.3026995 -.1386259 age | -.0150337 .0174845 -0.86 0.390 -.0493027 .0192354 agesq | -.0007325 .0002897 -2.53 0.011 -.0013003 -.0001647 evermarr | -.2972879 .0486734 -6.11 0.000 -.392686 -.2018898 urban | .2998122 .0432321 6.93 0.000 .2150789 .3845456 electric | .4246668 .0751255 5.65 0.000 .2774235 .57191 tv | .9281707 .0977462 9.50 0.000 .7365915 1.11975 _cons | 1.13537 .2440057 4.65 0.000 .6571273 1.613612 ------------------------------------------------------------------------------ predict propensity, p /*procedure 18.1*/ (3 missing values generated) ivreg children (educ7= propensity) age agesq evermarr urban electric tv Instrumental variables (2SLS) regression Source | SS df MS Number of obs = 4358 -------------+------------------------------ F( 7, 4350) = 710.92 Model | 10524.2446 7 1503.46351 Prob > F = 0.0000 Residual | 10985.7876 4350 2.52546841 R-squared = 0.4893 -------------+------------------------------ Adj R-squared = 0.4884 Total | 21510.0321 4357 4.93689055 Root MSE = 1.5892 ------------------------------------------------------------------------------ children | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- educ7 | -1.974509 .331779 -5.95 0.000 -2.624964 -1.324053 age | .252137 .0194358 12.97 0.000 .2140329 .290241 agesq | -.0020734 .0003079 -6.73 0.000 -.0026772 -.0014697 evermarr | .527485 .0677212 7.79 0.000 .3947169 .6602531 urban | -.0797056 .0613673 -1.30 0.194 -.2000168 .0406056 electric | -.1171961 .0953328 -1.23 0.219 -.3040969 .0697047 tv | .0789773 .1302613 0.61 0.544 -.1764013 .3343558 _cons | -2.032667 .4119708 -4.93 0.000 -2.840339 -1.224994 ------------------------------------------------------------------------------ Instrumented: educ7 Instruments: age agesq evermarr urban electric tv propensity ------------------------------------------------------------------------------ ivreg children (educ7= propensity) age agesq evermarr urban electric tv, robust IV (2SLS) regression with robust standard errors Number of obs = 4358 F( 7, 4350) = 678.11 Prob > F = 0.0000 R-squared = 0.4893 Root MSE = 1.5892 ------------------------------------------------------------------------------ | Robust children | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- educ7 | -1.974509 .3135566 -6.30 0.000 -2.589239 -1.359778 age | .252137 .0210049 12.00 0.000 .2109566 .2933173 agesq | -.0020734 .0003816 -5.43 0.000 -.0028215 -.0013254 evermarr | .527485 .0695789 7.58 0.000 .391075 .663895 urban | -.0797056 .0605259 -1.32 0.188 -.1983672 .038956 electric | -.1171961 .0891859 -1.31 0.189 -.2920458 .0576536 tv | .0789773 .1084846 0.73 0.467 -.1337078 .2916623 _cons | -2.032667 .3642986 -5.58 0.000 -2.746877 -1.318456 ------------------------------------------------------------------------------ Instrumented: educ7 Instruments: age agesq evermarr urban electric tv propensity ------------------------------------------------------------------------------