The data files used for the examples in this text can be downloaded in a zip file from the Stata Web site. You can then use a program such as zip to unzip the data files.
Example 4.1 on page 59 using the data set mroz.dta.
use mroz, clear reg lwage exper expersq educ age kidslt6 kidsge6 Source | SS df MS Number of obs = 428 -------------+------------------------------ F( 6, 421) = 13.19 Model | 35.3398089 6 5.88996815 Prob > F = 0.0000 Residual | 187.987632 421 .446526442 R-squared = 0.1582 -------------+------------------------------ Adj R-squared = 0.1462 Total | 223.327441 427 .523015084 Root MSE = .66823 ------------------------------------------------------------------------------ lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- exper | .039819 .013393 2.97 0.003 .0134936 .0661444 expersq | -.0007812 .0004022 -1.94 0.053 -.0015718 9.37e-06 educ | .1078319 .0144021 7.49 0.000 .079523 .1361409 age | -.0014653 .0052925 -0.28 0.782 -.0118682 .0089377 kidslt6 | -.0607106 .0887626 -0.68 0.494 -.2351836 .1137625 kidsge6 | -.014591 .0278981 -0.52 0.601 -.069428 .0402459 _cons | -.4209078 .316905 -1.33 0.185 -1.043821 .2020053 ------------------------------------------------------------------------------ test age kidslt6 kidsge6 ( 1) age = 0 ( 2) kidslt6 = 0 ( 3) kidsge6 = 0 F( 3, 421) = 0.24 Prob > F = 0.8705 reg lwage exper expersq educ age kidslt6 kidsge6, robust Regression with robust standard errors Number of obs = 428 F( 6, 421) = 13.78 Prob > F = 0.0000 R-squared = 0.1582 Root MSE = .66823 ------------------------------------------------------------------------------ | Robust lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- exper | .039819 .0152578 2.61 0.009 .0098281 .06981 expersq | -.0007812 .0004097 -1.91 0.057 -.0015865 .0000241 educ | .1078319 .0136235 7.92 0.000 .0810533 .1346106 age | -.0014653 .0059351 -0.25 0.805 -.0131313 .0102008 kidslt6 | -.0607106 .1061006 -0.57 0.567 -.2692635 .1478423 kidsge6 | -.014591 .0293505 -0.50 0.619 -.0722829 .0431009 _cons | -.4209078 .3183346 -1.32 0.187 -1.046631 .2048154 ------------------------------------------------------------------------------
The command above shows how to get robust standard errors for the parameter estimates. There is a discrepency between the results here and the results in the book. This is because that Stata does finite sample correction to the standard error. We can convert the robust standard error shown in the book to the results above by multiplying the robust standard error in the book with sqrt(N/(N-k)), where N is the total number of observations and k is the degree of freedom of the model. For example, the robust standard error for the intercept in the book is .316. We can convert it to the robust standard error shown in the table above as follows.
di .316*(428/(428-6))^.5 .31823852
We show how to get LM statistic and LM test below following the description of the process in the book.
reg lwage exper expersq educ Source | SS df MS Number of obs = 428 -------------+------------------------------ F( 3, 424) = 26.29 Model | 35.0222967 3 11.6740989 Prob > F = 0.0000 Residual | 188.305144 424 .444115906 R-squared = 0.1568 -------------+------------------------------ Adj R-squared = 0.1509 Total | 223.327441 427 .523015084 Root MSE = .66642 ------------------------------------------------------------------------------ lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- exper | .0415665 .0131752 3.15 0.002 .0156697 .0674633 expersq | -.0008112 .0003932 -2.06 0.040 -.0015841 -.0000382 educ | .1074896 .0141465 7.60 0.000 .0796837 .1352956 _cons | -.5220406 .1986321 -2.63 0.009 -.9124667 -.1316144 ------------------------------------------------------------------------------ predict res, res (325 missing values generated) reg res exper expersq educ age kidslt6 kidsge6 Source | SS df MS Number of obs = 428 -------------+------------------------------ F( 6, 421) = 0.12 Model | .317512266 6 .052918711 Prob > F = 0.9942 Residual | 187.98763 421 .446526438 R-squared = 0.0017 -------------+------------------------------ Adj R-squared = -0.0125 Total | 188.305143 427 .44099565 Root MSE = .66823 ------------------------------------------------------------------------------ res | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- exper | -.0017475 .013393 -0.13 0.896 -.0280729 .0245779 expersq | .00003 .0004022 0.07 0.941 -.0007606 .0008206 educ | .0003423 .0144021 0.02 0.981 -.0279666 .0286512 age | -.0014653 .0052925 -0.28 0.782 -.0118682 .0089377 kidslt6 | -.0607106 .0887626 -0.68 0.494 -.2351836 .1137625 kidsge6 | -.014591 .0278981 -0.52 0.601 -.069428 .0402459 _cons | .1011327 .316905 0.32 0.750 -.5217804 .7240458 ------------------------------------------------------------------------------ di 428*.0017 .7276 di chi2tail(3, .728) .86659913
Example 41 (continued) on page 60.
reg lwage exper expersq educ Source | SS df MS Number of obs = 428 -------------+------------------------------ F( 3, 424) = 26.29 Model | 35.0222967 3 11.6740989 Prob > F = 0.0000 Residual | 188.305144 424 .444115906 R-squared = 0.1568 -------------+------------------------------ Adj R-squared = 0.1509 Total | 223.327441 427 .523015084 Root MSE = .66642 ------------------------------------------------------------------------------ lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- exper | .0415665 .0131752 3.15 0.002 .0156697 .0674633 expersq | -.0008112 .0003932 -2.06 0.040 -.0015841 -.0000382 educ | .1074896 .0141465 7.60 0.000 .0796837 .1352956 _cons | -.5220406 .1986321 -2.63 0.009 -.9124667 -.1316144 ------------------------------------------------------------------------------ predict u, res (325 missing values generated) reg age exper expersq educ Source | SS df MS Number of obs = 753 -------------+------------------------------ F( 3, 749) = 48.91 Model | 8027.34887 3 2675.78296 Prob > F = 0.0000 Residual | 40977.8224 749 54.7100433 R-squared = 0.1638 -------------+------------------------------ Adj R-squared = 0.1605 Total | 49005.1713 752 65.1664512 Root MSE = 7.3966 ------------------------------------------------------------------------------ age | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- exper | -.1424069 .096921 -1.47 0.142 -.332676 .0478621 expersq | .016711 .0031269 5.34 0.000 .0105724 .0228496 educ | -.4363879 .1192663 -3.66 0.000 -.670524 -.2022518 _cons | 46.43838 1.521431 30.52 0.000 43.4516 49.42515 ------------------------------------------------------------------------------ predict r1, res reg kidslt6 exper expersq educ Source | SS df MS Number of obs = 753 -------------+------------------------------ F( 3, 749) = 13.85 Model | 10.8498698 3 3.61662327 Prob > F = 0.0000 Residual | 195.599001 749 .261146864 R-squared = 0.0526 -------------+------------------------------ Adj R-squared = 0.0488 Total | 206.448871 752 .274533073 Root MSE = .51103 ------------------------------------------------------------------------------ kidslt6 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- exper | -.0145597 .0066962 -2.17 0.030 -.0277052 -.0014142 expersq | .0000493 .000216 0.23 0.819 -.0003748 .0004734 educ | .0282583 .00824 3.43 0.001 .0120821 .0444345 _cons | .0365076 .1051141 0.35 0.728 -.1698457 .2428609 ------------------------------------------------------------------------------ predict r2, res reg kidsge6 exper expersq educ Source | SS df MS Number of obs = 753 -------------+------------------------------ F( 3, 749) = 26.14 Model | 124.144723 3 41.3815742 Prob > F = 0.0000 Residual | 1185.88981 749 1.58329747 R-squared = 0.0948 -------------+------------------------------ Adj R-squared = 0.0911 Total | 1310.03453 752 1.74206719 Root MSE = 1.2583 ------------------------------------------------------------------------------ kidsge6 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- exper | -.0221468 .0164879 -1.34 0.180 -.0545148 .0102212 expersq | -.0009084 .0005319 -1.71 0.088 -.0019526 .0001359 educ | -.0264995 .0202892 -1.31 0.192 -.06633 .013331 _cons | 2.07601 .2588212 8.02 0.000 1.567909 2.584111 ------------------------------------------------------------------------------ predict r3, res gen one = 1 gen rage = u*r1 (325 missing values generated) gen rle6 = u*r2 (325 missing values generated) gen rge6 = u*r3 (325 missing values generated) reg one rage rle6 rge6, nocons Source | SS df MS Number of obs = 428 -------------+------------------------------ F( 3, 425) = 0.17 Model | .521511721 3 .17383724 Prob > F = 0.9147 Residual | 427.478488 425 1.00583174 R-squared = 0.0012 -------------+------------------------------ Adj R-squared = -0.0058 Total | 428 428 1 Root MSE = 1.0029 ------------------------------------------------------------------------------ one | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- rage | -.0028426 .0109138 -0.26 0.795 -.0242943 .018609 rle6 | -.0940857 .1710924 -0.55 0.583 -.4303782 .2422068 rge6 | -.0266196 .059492 -0.45 0.655 -.1435548 .0903155 ------------------------------------------------------------------------------
di 428*0.0012 .5136 di chi2tail(3, .5136) .91589355
Example 4.3 on page 63 using nls80.dta.
use nls80, clear reg lwage exper tenure married south urban black educ Source | SS df MS Number of obs = 935 -------------+------------------------------ F( 7, 927) = 44.75 Model | 41.8377619 7 5.97682312 Prob > F = 0.0000 Residual | 123.818521 927 .133569063 R-squared = 0.2526 -------------+------------------------------ Adj R-squared = 0.2469 Total | 165.656283 934 .177362188 Root MSE = .36547 ------------------------------------------------------------------------------ lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- exper | .014043 .0031852 4.41 0.000 .007792 .020294 tenure | .0117473 .002453 4.79 0.000 .0069333 .0165613 married | .1994171 .0390502 5.11 0.000 .1227801 .276054 south | -.0909036 .0262485 -3.46 0.001 -.142417 -.0393903 urban | .1839121 .0269583 6.82 0.000 .1310056 .2368185 black | -.1883499 .0376666 -5.00 0.000 -.2622717 -.1144281 educ | .0654307 .0062504 10.47 0.000 .0531642 .0776973 _cons | 5.395497 .113225 47.65 0.000 5.17329 5.617704 ------------------------------------------------------------------------------ reg lwage exper tenure married south urban black educ iq Source | SS df MS Number of obs = 935 -------------+------------------------------ F( 8, 926) = 41.27 Model | 43.5360162 8 5.44200202 Prob > F = 0.0000 Residual | 122.120267 926 .131879338 R-squared = 0.2628 -------------+------------------------------ Adj R-squared = 0.2564 Total | 165.656283 934 .177362188 Root MSE = .36315 ------------------------------------------------------------------------------ lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- exper | .0141458 .0031651 4.47 0.000 .0079342 .0203575 tenure | .0113951 .0024394 4.67 0.000 .0066077 .0161825 married | .1997644 .0388025 5.15 0.000 .1236134 .2759154 south | -.0801695 .0262529 -3.05 0.002 -.1316916 -.0286473 urban | .1819463 .0267929 6.79 0.000 .1293645 .2345281 black | -.1431253 .0394925 -3.62 0.000 -.2206304 -.0656202 educ | .0544106 .0069285 7.85 0.000 .0408133 .068008 iq | .0035591 .0009918 3.59 0.000 .0016127 .0055056 _cons | 5.176439 .1280006 40.44 0.000 4.925234 5.427644 ------------------------------------------------------------------------------
Example 4.4 on page 66 using jtrain1.dta.
gen scrap88 = (year==1988 & scrap~=.) reg lscrap grant if scrap88 Source | SS df MS Number of obs = 54 -------------+------------------------------ F( 1, 52) = 0.02 Model | .039451758 1 .039451758 Prob > F = 0.8895 Residual | 105.323208 52 2.02544631 R-squared = 0.0004 -------------+------------------------------ Adj R-squared = -0.0188 Total | 105.36266 53 1.98797472 Root MSE = 1.4232 ------------------------------------------------------------------------------ lscrap | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- grant | .0566004 .4055519 0.14 0.890 -.757199 .8703997 _cons | .408526 .2405616 1.70 0.095 -.0741962 .8912482 ------------------------------------------------------------------------------ reg lscrap grant lscrap_1 if scrap88 Source | SS df MS Number of obs = 54 -------------+------------------------------ F( 2, 51) = 174.94 Model | 91.9584791 2 45.9792396 Prob > F = 0.0000 Residual | 13.4041809 51 .262827077 R-squared = 0.8728 -------------+------------------------------ Adj R-squared = 0.8678 Total | 105.36266 53 1.98797472 Root MSE = .51267 ------------------------------------------------------------------------------ lscrap | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- grant | -.2539697 .1470311 -1.73 0.090 -.5491469 .0412076 lscrap_1 | .8311606 .0444444 18.70 0.000 .7419347 .9203865 _cons | .021237 .0890967 0.24 0.813 -.1576321 .2001061 ------------------------------------------------------------------------------
Example 4.5 on page 69 using nls80.dta.
use nls80, clear gen educ_iq = educ*iq reg lwage exper tenure married south urban black educ iq educ_iq Source | SS df MS Number of obs = 935 -------------+------------------------------ F( 9, 925) = 36.76 Model | 43.6401231 9 4.84890256 Prob > F = 0.0000 Residual | 122.01616 925 .131909362 R-squared = 0.2634 -------------+------------------------------ Adj R-squared = 0.2563 Total | 165.656283 934 .177362188 Root MSE = .36319 ------------------------------------------------------------------------------ lwage | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- exper | .0139072 .0031768 4.38 0.000 .0076725 .0201418 tenure | .0113929 .0024397 4.67 0.000 .0066049 .0161808 married | .2008658 .0388267 5.17 0.000 .1246671 .2770644 south | -.0802354 .026256 -3.06 0.002 -.1317637 -.0287072 urban | .1835758 .0268586 6.83 0.000 .1308649 .2362867 black | -.1466989 .0397013 -3.70 0.000 -.2246139 -.0687839 educ | .0184559 .0410608 0.45 0.653 -.0621272 .0990391 iq | -.0009418 .0051625 -0.18 0.855 -.0110734 .0091899 educ_iq | .0003399 .0003826 0.89 0.375 -.0004109 .0010907 _cons | 5.648248 .5462963 10.34 0.000 4.576124 6.720372 ------------------------------------------------------------------------------ test iq educ_iq ( 1) iq = 0 ( 2) educ_iq = 0 F( 2, 925) = 6.83 Prob > F = 0.0011