Page 130, Table 5.1
use "a:table5.dta", clear rename col1 town rename col2 hours list
+---------------+ | town hours | |---------------| 1. | A 35 | 2. | A 28 | 3. | A 26 | 4. | A 41 | 5. | A 43 | |---------------| 6. | A 29 | 7. | A 32 | 8. | A 37 | 9. | A 36 | 10. | A 25 | |---------------| 11. | A 29 | 12. | A 31 | 13. | A 39 | 14. | A 38 | 15. | A 40 | |---------------| 16. | A 45 | 17. | A 28 | 18. | A 27 | 19. | A 35 | 20. | A 34 | |---------------| 21. | B 27 | 22. | B 4 | 23. | B 49 | 24. | B 10 | 25. | B 15 | |---------------| 26. | B 41 | 27. | B 25 | 28. | B 30 | 29. | RURAL 8 | 30. | RURAL 15 | |---------------| 31. | RURAL 21 | 32. | RURAL 7 | 33. | RURAL 14 | 34. | RURAL 30 | 35. | RURAL 20 | |---------------| 36. | RURAL 11 | 37. | RURAL 12 | 38. | RURAL 32 | 39. | RURAL 34 | 40. | RURAL 24 | +---------------+
Page 131, Figure 5.1
graph hbox hours, by(town) ylabel(0(12)48) ytitle("Hours")
Page 131, the middle of the page
NOTE: Stata 9 does not seem to use string variables as strata variables. We will use the encode command to create a numeric variable that we will call t1 for use as the strata variable.
gen wt = 155/20 replace wt = 62/8 if town == "B" replace wt = 93/12 if town == "RURAL" encode town, gen(t1) svyset [pweight=wt], strata(t1) pweight: wt VCE: linearized Strata 1: t1 SU 1: <observations> FPC 1: <zero> svy: mean hours (running mean on estimation sample) Survey: Mean estimation Number of strata = 3 Number of obs = 40 Number of PSUs = 40 Population size = 310 Design df = 37 -------------------------------------------------------------- | Linearized | Mean Std. Err. [95% Conf. Interval] -------------+------------------------------------------------ hours | 27.675 1.503762 24.62809 30.72191 -------------------------------------------------------------- estat effects ---------------------------------------------------------- | Linearized | Mean Std. Err. Deff Deft -------------+-------------------------------------------- hours | 27.675 1.503762 .706547 .840563 sort t1 by t1: tabstat hours, s(n mean p50 sd) ------------------------------------------------------------------------------------------------------------- -> t1 = A variable | N mean p50 sd -------------+---------------------------------------- hours | 20 33.9 34.5 5.94625 ------------------------------------------------------ ------------------------------------------------------------------------------------------------------------- -> t1 = B variable | N mean p50 sd -------------+---------------------------------------- hours | 8 25.125 26 15.24502 ------------------------------------------------------ ------------------------------------------------------------------------------------------------------------- -> t1 = RURAL variable | N mean p50 sd -------------+---------------------------------------- hours | 12 19 17.5 9.36143 ------------------------------------------------------
Page 135, at the bottom
svy: total hours (running total on estimation sample) Survey: Total estimation Number of strata = 3 Number of obs = 40 Number of PSUs = 40 Population size = 310 Design df = 37 -------------------------------------------------------------- | Linearized | Total Std. Err. [95% Conf. Interval] -------------+------------------------------------------------ hours | 8579.25 466.1662 7634.708 9523.792 --------------------------------------------------------------