use "https://stats.idre.ucla.edu/stat/stata/examples/greene/TBL16-2.DTA", clear generate w = wg+wp generate k = k1+i generate yr=year-1931 generate p1 = p[_n-1] generate x1 = x[_n-1] save table16-2
Table 16.4, OLS, page 687.
regress c p p1 w Source | SS df MS Number of obs = 21 -------------+------------------------------ F( 3, 17) = 292.71 Model | 923.549937 3 307.849979 Prob > F = 0.0000 Residual | 17.8794524 17 1.05173249 R-squared = 0.9810 -------------+------------------------------ Adj R-squared = 0.9777 Total | 941.429389 20 47.0714695 Root MSE = 1.0255 ------------------------------------------------------------------------------ c | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- p | .1929343 .0912102 2.12 0.049 .0004977 .385371 p1 | .0898847 .0906479 0.99 0.335 -.1013658 .2811351 w | .7962188 .0399439 19.93 0.000 .7119444 .8804931 _cons | 16.2366 1.302698 12.46 0.000 13.48815 18.98506 ------------------------------------------------------------------------------
Table 16.4, 2SLS using reg3, page 687.
reg3 (c p p1 w), 2sls nodfk inst(t wg g yr p1 x1 k1) Two-stage least-squares regression ---------------------------------------------------------------------- Equation Obs Parms RMSE "R-sq" F-Stat P ---------------------------------------------------------------------- c 21 3 1.135659 0.9767 279.0941 0.0000 ---------------------------------------------------------------------- ------------------------------------------------------------------------------ | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- c | p | .0173022 .1180494 0.15 0.885 -.2317603 .2663647 p1 | .2162338 .107268 2.02 0.060 -.0100818 .4425495 w | .8101827 .0402497 20.13 0.000 .7252632 .8951022 _cons | 16.55476 1.320793 12.53 0.000 13.76813 19.34139 ------------------------------------------------------------------------------ Endogenous variables: c p w Exogenous variables: t wg g yr p1 x1 k1 ------------------------------------------------------------------------------
Table 16.4, 2SLS using ivreg, page 687. The initial ivreg produces the correct coefficients but the standard errors are wrong. Additional code is necessary to obtain the correct standard errors.
ivreg c p1 (p w = t wg g yr p1 x1 k1) Instrumental variables (2SLS) regression Source | SS df MS Number of obs = 21 -------------+------------------------------ F( 3, 17) = 225.93 Model | 919.504138 3 306.501379 Prob > F = 0.0000 Residual | 21.9252518 17 1.28972069 R-squared = 0.9767 -------------+------------------------------ Adj R-squared = 0.9726 Total | 941.429389 20 47.0714695 Root MSE = 1.1357 ------------------------------------------------------------------------------ c | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- p | .0173022 .1312046 0.13 0.897 -.2595153 .2941197 w | .8101827 .0447351 18.11 0.000 .7158 .9045654 p1 | .2162338 .1192217 1.81 0.087 -.0353019 .4677696 _cons | 16.55476 1.467979 11.28 0.000 13.45759 19.65192 ------------------------------------------------------------------------------ Instrumented: p w Instruments: p1 t wg g yr x1 k1 ------------------------------------------------------------------------------ /* additional code to get correct standard errors, thanks to Kit Baum */ mat vpr=e(V)*e(df_r)/e(N) mat se=e(b) local nc=colsof(se) forv i=1/`nc' { mat se[1,`i']=sqrt(vpr[`i',`i']) } mat list se se[1,4] p w p1 _cons y1 .11804942 .04024972 .10726797 1.3207925
Table 16.4, GMM, page 687. Uses ivgmm0 by Christopher F. Baum and David M. Drukker, available from SSC-Ideas. The program ivgmm0 can be downloaded typing search ivgmm0 in the command line (see How can I use the search command to search for programs and get additional help? for more information about using search). The standard errors are the same as Greene but the coefficients are slightly different. Results identical to Stata are produced by the program TSP. Some researchers suggest that Greene’s coefficients are due to the fact that he uses the results from prior analyses as his starting values.
ivgmm0 c p1 (p w = t wg g yr p1 x1 k1) Instrumental Variables Estimation via GMM Number of obs = 21 Root MSE = 1.0255 Hansen J = 4.1098 Chi-sq( 4) P-val = 0.39135 ------------------------------------------------------------------------------ | GMM c | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- p | .0757916 .0615982 1.23 0.219 -.0449386 .1965218 w | .8493653 .0292499 29.04 0.000 .7920365 .9066941 p1 | .1662683 .0654933 2.54 0.011 .0379039 .2946327 _cons | 14.74433 .8966058 16.44 0.000 12.98702 16.50165 ------------------------------------------------------------------------------ Instrumented: p w Instruments: p1 t wg g yr x1 k1 ------------------------------------------------------------------------------
Table 16.4, LIML, page 687. Currently there is no Stata solution for the LIML model.
Table 16.5, 2SLS, page 699.
reg3 (c p p1 w) (i p p1 k1) (wp x x1 yr), 2sls nodfk inst(t wg g yr p1 x1 k1) Two-stage least-squares regression ---------------------------------------------------------------------- Equation Obs Parms RMSE "R-sq" F-Stat P ---------------------------------------------------------------------- c 21 3 1.135659 0.9767 279.0941 0.0000 i 21 3 1.307149 0.8849 50.89437 0.0000 wp 21 3 .7671548 0.9874 524.005 0.0000 ---------------------------------------------------------------------- ------------------------------------------------------------------------------ | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- c | p | .0173022 .1180494 0.15 0.884 -.2196919 .2542963 p1 | .2162338 .107268 2.02 0.049 .0008844 .4315833 w | .8101827 .0402497 20.13 0.000 .729378 .8909874 _cons | 16.55476 1.320793 12.53 0.000 13.90316 19.20636 -------------+---------------------------------------------------------------- i | p | .1502219 .1732292 0.87 0.390 -.1975503 .4979941 p1 | .6159434 .1627853 3.78 0.000 .2891382 .9427486 k1 | -.1577876 .0361262 -4.37 0.000 -.2303141 -.0852612 _cons | 20.27821 7.542704 2.69 0.010 5.135599 35.42082 -------------+---------------------------------------------------------------- wp | x | .4388591 .0356319 12.32 0.000 .3673251 .5103931 x1 | .1466739 .0388361 3.78 0.000 .0687071 .2246406 yr | .1303956 .029141 4.47 0.000 .0718927 .1888985 _cons | 1.500296 1.147779 1.31 0.197 -.8039674 3.804559 ------------------------------------------------------------------------------ Endogenous variables: c p w i wp x Exogenous variables: t wg g yr p1 x1 k1 ------------------------------------------------------------------------------
Table 16.5, OLS, page 699.
reg3 (c p p1 w) (i p p1 k1) (wp x x1 yr), ols Multivariate regression ---------------------------------------------------------------------- Equation Obs Parms RMSE "R-sq" F-Stat P ---------------------------------------------------------------------- c 21 3 1.02554 0.9810 292.7075 0.0000 i 21 3 1.009447 0.9313 76.87538 0.0000 wp 21 3 .7671466 0.9874 444.5687 0.0000 ---------------------------------------------------------------------- ------------------------------------------------------------------------------ | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- c | p | .1929343 .0912102 2.12 0.039 .0098223 .3760464 p1 | .0898847 .0906479 0.99 0.326 -.0920987 .271868 w | .7962188 .0399439 19.93 0.000 .716028 .8764095 _cons | 16.2366 1.302698 12.46 0.000 13.62133 18.85188 -------------+---------------------------------------------------------------- i | p | .4796356 .0971146 4.94 0.000 .28467 .6746012 p1 | .3330387 .1008592 3.30 0.002 .1305554 .535522 k1 | -.1117947 .0267276 -4.18 0.000 -.1654525 -.0581369 _cons | 10.12579 5.465546 1.85 0.070 -.8467492 21.09833 -------------+---------------------------------------------------------------- wp | x | .4394769 .0324076 13.56 0.000 .374416 .5045378 x1 | .14609 .0374231 3.90 0.000 .07096 .22122 yr | .1302452 .0319103 4.08 0.000 .0661826 .1943077 _cons | 1.497043 1.270031 1.18 0.244 -1.052651 4.046737 ------------------------------------------------------------------------------
Table 16.5, 3SLS, page 699.
reg3 (c p p1 w) (i p p1 k1) (wp x x1 yr), 3sls inst(t wg g yr p1 x1 k1) Three-stage least squares regression ---------------------------------------------------------------------- Equation Obs Parms RMSE "R-sq" chi2 P ---------------------------------------------------------------------- c 21 3 .9443305 0.9801 864.5909 0.0000 i 21 3 1.446736 0.8258 162.9808 0.0000 wp 21 3 .7211282 0.9863 1594.751 0.0000 ---------------------------------------------------------------------- ------------------------------------------------------------------------------ | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- c | p | .1248904 .1081291 1.16 0.248 -.0870387 .3368194 p1 | .1631439 .1004382 1.62 0.104 -.0337113 .3599992 w | .790081 .0379379 20.83 0.000 .715724 .8644379 _cons | 16.44079 1.304549 12.60 0.000 13.88392 18.99766 -------------+---------------------------------------------------------------- i | p | -.0130791 .1618962 -0.08 0.936 -.3303898 .3042316 p1 | .7557238 .1529331 4.94 0.000 .4559805 1.055467 k1 | -.1948482 .0325307 -5.99 0.000 -.2586072 -.1310893 _cons | 28.17785 6.793768 4.15 0.000 14.86231 41.49339 -------------+---------------------------------------------------------------- wp | x | .4004919 .0318134 12.59 0.000 .3381388 .462845 x1 | .181291 .0341588 5.31 0.000 .1143411 .2482409 yr | .149674 .0279352 5.36 0.000 .094922 .2044261 _cons | 1.797216 1.115854 1.61 0.107 -.3898181 3.984251 ------------------------------------------------------------------------------ Endogenous variables: c p w i wp x Exogenous variables: t wg g yr p1 x1 k1 ------------------------------------------------------------------------------
Table 16.5, I3SLS, page 699.
reg3 (c p p1 w) (i p p1 k1) (wp x x1 yr), 3sls ireg3 inst(t wg g yr p1 x1 k1) Iteration 1: tolerance = .37125491 .. Iteration 24: tolerance = 7.049e-07 Three-stage least squares regression, iterated ---------------------------------------------------------------------- Equation Obs Parms RMSE "R-sq" chi2 P ---------------------------------------------------------------------- c 21 3 .9565088 0.9796 970.3072 0.0000 i 21 3 2.134327 0.6209 56.77951 0.0000 wp 21 3 .7782334 0.9840 1312.188 0.0000 ---------------------------------------------------------------------- ------------------------------------------------------------------------------ | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- c | p | .1645096 .0961979 1.71 0.087 -.0240348 .3530539 p1 | .1765639 .0901001 1.96 0.050 -.0000291 .3531569 w | .7658011 .0347599 22.03 0.000 .6976729 .8339294 _cons | 16.55899 1.224401 13.52 0.000 14.15921 18.95877 -------------+---------------------------------------------------------------- i | p | -.3565316 .2601568 -1.37 0.171 -.8664296 .1533664 p1 | 1.011299 .2487745 4.07 0.000 .5237098 1.498888 k1 | -.2602 .0508694 -5.12 0.000 -.3599022 -.1604978 _cons | 42.89629 10.59386 4.05 0.000 22.13271 63.65987 -------------+---------------------------------------------------------------- wp | x | .3747792 .0311027 12.05 0.000 .3138191 .4357394 x1 | .1936506 .0324018 5.98 0.000 .1301443 .257157 yr | .1679262 .0289291 5.80 0.000 .1112263 .2246261 _cons | 2.624766 1.195559 2.20 0.028 .2815124 4.968019 ------------------------------------------------------------------------------ Endogenous variables: c p w i wp x Exogenous variables: t wg g yr p1 x1 k1 ------------------------------------------------------------------------------
Table 16.5, page 699. Currently there are not Stata solutions for the LIML, FIML, GMM (H2SLS) and GMM (H3SLS) models.