Table 7.2-1, page 260.
use https://stats.idre.ucla.edu/stat/stata/examples/kirk/rb4, clear tabdisp s a, cellvar(y) ----------+----------------------- | a s | 1 2 3 4 ----------+----------------------- 1 | 3 4 4 3 2 | 2 4 4 5 3 | 2 3 3 6 4 | 3 3 3 5 5 | 1 2 4 7 6 | 3 3 6 6 7 | 4 4 5 10 8 | 6 5 5 8 ----------+-----------------------
Table 7.2-2, page 261.
anova y a s Number of obs = 32 R-squared = 0.7318 Root MSE = 1.18523 Adj R-squared = 0.6041 Source | Partial SS df MS F Prob > F -----------+---------------------------------------------------- Model | 80.50 10 8.05 5.73 0.0004 | a | 49.00 3 16.3333333 11.63 0.0001 s | 31.50 7 4.50 3.20 0.0180 | Residual | 29.50 21 1.4047619 -----------+---------------------------------------------------- Total | 110.00 31 3.5483871
Table 7.3-2, page 271.
Note: The nonadd command can be downloaded by typing search nonadd (see How can I use the search command to search for programs and get additional help? for more information about using search).
nonadd y a s Tukey's test of nonadditivity for randomized block designs F (1,20) = 1.2795813 Pr > F: .27135918
Figure 7.3-1, page 272.
anova y a s, noanova /* rerun anova without redisplaying anova table */ predict yhat /* yhat is the fitted value */ predict e, rstandard /* e is the standardized residual */ graph twoway scatter e yhat, ylabel(-2.5(.5)2.5) xlabel(1(1)9)
Various computations on compound symmetry, pages 274-282.
anova y a s, repeated(a) /* anova with conservative p-values for repeated measures */ Number of obs = 32 R-squared = 0.7318 Root MSE = 1.18523 Adj R-squared = 0.6041 Source | Partial SS df MS F Prob > F -----------+---------------------------------------------------- Model | 80.50 10 8.05 5.73 0.0004 | a | 49.00 3 16.3333333 11.63 0.0001 s | 31.50 7 4.50 3.20 0.0180 | Residual | 29.50 21 1.4047619 -----------+---------------------------------------------------- Total | 110.00 31 3.5483871 Between-subjects error term: s Levels: 8 (7 df) Lowest b.s.e. variable: s Repeated variable: a Huynh-Feldt epsilon = 0.8343 Greenhouse-Geisser epsilon = 0.6195 Box's conservative epsilon = 0.3333 ------------ Prob > F ------------ Source | df F Regular H-F G-G Box -----------+---------------------------------------------------- a | 3 11.63 0.0001 0.0003 0.0015 0.0113 Residual | 21 -----------+---------------------------------------------------- matrix list e(Srep) /* display variance-covariance matrix */ symmetric e(Srep)[4,4] c1 c2 c3 c4 r1 2.2857143 r2 1.1428571 .85714286 r3 .71428571 .28571429 1.0714286 r4 1.2857143 .28571429 .92857143 4.5
Table 7.8-2, page 299.
use https://stats.idre.ucla.edu/stat/stata/examples/kirk/rb3, clear tabdisp s a, cellvar(y) ----------+----------------- | a s | 1 2 3 ----------+----------------- 1 | 15 12 11 2 | 11 9 3 | 13 13 ----------+-----------------
Table 7.8-3, page 301.
anova y a s Number of obs = 7 R-squared = 0.8970 Root MSE = 1.06458 Adj R-squared = 0.6909 Source | Partial SS df MS F Prob > F -----------+---------------------------------------------------- Model | 19.7333333 4 4.93333333 4.35 0.1954 | a | 8.40 2 4.20 3.71 0.2125 s | 3.73333333 2 1.86666667 1.65 0.3778 | Residual | 2.26666667 2 1.13333333 -----------+---------------------------------------------------- Total | 22.00 6 3.66666667
Tables 7.9-1, page 305.
use https://stats.idre.ucla.edu/stat/stata/examples/kirk/grb4, clear tabdisp id a, by(g) cellvar(y) ----------+----------------------- | a g and id | 1 2 3 4 ----------+----------------------- 1 | 1 | 3 4 4 3 2 | 3 3 3 5 ----------+----------------------- 2 | 1 | 2 4 4 5 2 | 2 3 3 6 ----------+----------------------- 3 | 1 | 6 5 5 8 2 | 3 3 6 6 ----------+----------------------- 4 | 1 | 1 2 4 7 2 | 4 4 5 10 ----------+----------------------- table g a, cont(sum y) ----------+----------------------- | a g | 1 2 3 4 ----------+----------------------- 1 | 6 7 7 8 2 | 4 7 7 11 3 | 9 8 11 14 4 | 5 6 9 17 ----------+-----------------------
Table 7.9-2, page 306.
Note: To obtain the correct F-ratio of a, a*g is used as the error term.
anova y a g a*g Number of obs = 32 R-squared = 0.7727 Root MSE = 1.25 Adj R-squared = 0.5597 Source | Partial SS df MS F Prob > F -----------+---------------------------------------------------- Model | 85.00 15 5.66666667 3.63 0.0074 | a | 49.00 3 16.3333333 10.45 0.0005 g | 16.75 3 5.58333333 3.57 0.0377 a*g | 19.25 9 2.13888889 1.37 0.2795 | Residual | 25.00 16 1.5625 -----------+---------------------------------------------------- Total | 110.00 31 3.5483871 test a /a*g Source | Partial SS df MS F Prob > F -----------+---------------------------------------------------- a | 49.00 3 16.3333333 7.64 0.0076 a*g | 19.25 9 2.13888889