NOTE: If you want to see the design effect or the misspecification effect, use estat effects after the command.
Page 64, figure 3.1
use https://stats.idre.ucla.edu/stat/stata/examples/lohr/agsrs.dta, clear twoway (scatter acres92 acres87) (lfit acres92 acres87), ylabel( , nogrid angle(0)) /// xtitle("Millions of Acres Devoted to Farms (1987)") /// ytitle("Millions of Acres Devoted to Farms (1992)")
Page 65, table 3.1
di 297897.0467/301953.7233 gen residual = acres92 - .98656524*acres87 list county state acres92 acres87 residual in 1/6 +-----------------------------------------------------------+ | county state acres92 acres87 residual | |-----------------------------------------------------------| 1. | COFFEE COUNTY AL 175209 179311 -1693 | 2. | COLBERT COUNTY AL 138135 145104 -5019.563 | 3. | LAMAR COUNTY AL 56102 59861 -2954.782 | 4. | MARENGO COUNTY AL 199117 220526 -18446.29 | 5. | MARION COUNTY AL 89228 105586 -14939.48 | |-----------------------------------------------------------| 6. | TUSCALOOSA COUNTY AL 96194 120542 -22728.55 | +-----------------------------------------------------------+ list county state acres92 acres87 residual in -5/l +----------------------------------------------------------+ | county state acres92 acres87 residual | |----------------------------------------------------------| 296. | OZAUKEE COUNTY WI 78772 85201 -5284.345 | 297. | ROCK COUNTY WI 343115 357751 -9829.701 | 298. | KANAWHA COUNTY WV 19956 21369 -1125.913 | 299. | PLEASANTS COUNTY WV 15650 15716 145.1407 | 300. | PUTNAM COUNTY WV 55827 55635 939.4429 | +----------------------------------------------------------+ tabstat acres92 acres87 residual, s(sum mean sd) format(%11.0g) stats | acres92 acres87 residual ---------+------------------------------ sum | 89369114 90586117-.244007111 mean | 297897.047 301953.723-.000813357 sd | 344551.895 344829.596 31657.2178 ----------------------------------------
Page 72, table 3.3
clear input tree x y 1 1 0 2 0 0 3 8 1 4 2 2 5 76 10 6 60 15 7 25 3 8 2 2 9 1 1 10 31 27 end list +----------------+ | tree x y | |----------------| 1. | 1 1 0 | 2. | 2 0 0 | 3. | 3 8 1 | 4. | 4 2 2 | 5. | 5 76 10 | |----------------| 6. | 6 60 15 | 7. | 7 25 3 | 8. | 8 2 2 | 9. | 9 1 1 | 10. | 10 31 27 | +----------------+ tabstat x y, s(sum mean sd) stats | x y ---------+-------------------- sum | 206 61 mean | 20.6 6.1 sd | 27.47201 8.824839 ------------------------------
Page 73, figure 3.4
graph twoway (scatter y x) (function y = .2961*x, range(0 80)), ylabel( , nogrid angle(0))
Page 73 in the middle
di 6.1/20.6 .2961165
Page 75 in the middle
clear input photo field 10 15 12 14 7 9 13 14 13 8 6 5 17 18 16 15 15 13 10 15 14 11 12 15 10 12 5 8 12 13 10 9 10 11 9 12 6 9 11 12 7 13 9 11 11 10 10 9 10 8 end list +---------------+ | photo field | |---------------| 1. | 10 15 | 2. | 12 14 | 3. | 7 9 | 4. | 13 14 | 5. | 13 8 | |---------------| 6. | 6 5 | 7. | 17 18 | 8. | 16 15 | 9. | 15 13 | 10. | 10 15 | |---------------| 11. | 14 11 | 12. | 12 15 | 13. | 10 12 | 14. | 5 8 | 15. | 12 13 | |---------------| 16. | 10 9 | 17. | 10 11 | 18. | 9 12 | 19. | 6 9 | 20. | 11 12 | |---------------| 21. | 7 13 | 22. | 9 11 | 23. | 11 10 | 24. | 10 9 | 25. | 10 8 | +---------------+ tabstat photo field, s(n mean sd sum min max) stats | photo field ---------+-------------------- N | 25 25 mean | 10.6 11.56 sd | 3.068659 3.014963 sum | 265 289 min | 5 5 max | 17 18 ------------------------------ regress field photo Source | SS df MS Number of obs = 25 -------------+------------------------------ F( 1, 23) = 14.68 Model | 84.999823 1 84.999823 Prob > F = 0.0009 Residual | 133.160177 23 5.78957291 R-squared = 0.3896 -------------+------------------------------ Adj R-squared = 0.3631 Total | 218.16 24 9.09 Root MSE = 2.4062 ------------------------------------------------------------------------------ field | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- photo | .6132743 .1600549 3.83 0.001 .2821755 .9443732 _cons | 5.059292 1.763512 2.87 0.009 1.41119 8.707394 ------------------------------------------------------------------------------
Page 76, figure 3.5
graph twoway (scatter field photo) (lfit field photo), ylabel(6(2)18, nogrid angle(0)) /// ytitle(Field Count of Dead Trees) xtitle(Photo Count of Dead Trees) xlabel(6(2)18)
Page 79 in the middle
use https://stats.idre.ucla.edu/stat/stata/examples/lohr/agsrs.dta, clear gen west = 0 replace west = 1 if state =="AK" | state =="AZ" | state =="CA" | state =="CO" | state =="HI" | /// state =="ID" | state =="MT" | state =="NV" | state =="NM" | state =="OR" | state =="UT" | /// state =="WA" | state =="WY" drop if west == 0 tabstat acres92, s(mean sd) variable | mean sd -------------+-------------------- acres92 | 598680.6 516157.7 ----------------------------------
Page 83 at the bottom
NOTE: The three values that are predicted after the svy: reg command are used for the table on the next page.
NOTE: You need to update Stata 9 before this will run without an error message. To update your Stata, (while on the internet) type: update all.
use https://stats.idre.ucla.edu/stat/stata/examples/lohr/agsrs.dta, clear gen wt = 1/acres87 svyset [pweight = wt] svy: reg acres92 acres87, nocons predict yhat predict sterror, stdp predict residual, resid Survey linear regression pweight: wt Number of obs = 299 Strata: <one> Number of strata = 1 PSU: <observations> Number of PSUs = 299 Population size = .00759475 F( 1, 298) = 26564.60 Prob > F = 0.0000 R-squared = 0.9929 ------------------------------------------------------------------------------ acres92 | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- acres87 | .9865652 .006053 162.99 0.000 .9746531 .9984774 ------------------------------------------------------------------------------
Page 84 at the top
NOTE: It is unclear what two line were added to the bottom of the SAS data file. Also, Appendix E is table of random numbers.
list wt acres92 yhat sterror residual in 1/10 +------------------------------------------------------+ | wt acres92 yhat sterror residual | |------------------------------------------------------| 1. | 5.58e-06 175209 176902 1085.378 -1692.999 | 2. | 6.89e-06 138135 143154.6 878.3216 -5019.562 | 3. | .0000167 56102 59056.78 362.3416 -2954.782 | 4. | 4.53e-06 199117 217563.3 1334.855 -18446.29 | 5. | 9.47e-06 89228 104167.5 639.1172 -14939.48 | |------------------------------------------------------| 6. | 8.30e-06 96194 118922.5 729.6466 -22728.55 | 7. | .0000151 57253 65414.21 401.3474 -8161.208 | 8. | 4.47e-06 210692 220590.1 1353.425 -9898.067 | 9. | .0000125 78498 79188.63 485.86 -690.6319 | 10. | 4.26e-06 219444 231453.1 1420.075 -12009.14 | +------------------------------------------------------+ list wt acres92 yhat sterror residual in -4/l +------------------------------------------------------+ | wt acres92 yhat sterror residual | |------------------------------------------------------| 297. | 2.80e-06 343115 352944.7 2165.484 -9829.7 | 298. | .0000468 19956 21081.91 129.3476 -1125.913 | 299. | .0000636 15650 15504.86 95.12971 145.1407 | 300. | .000018 55827 54887.56 336.7614 939.443 | +------------------------------------------------------+
Page 85, figure 3.6
NOTE: Although the title is shown on the graph below as it is in the text, the scale of the x-axis was not changed as it was in the text.
gen wtdresid = (acres92 - .986565*acres87)/sqrt(acres87) graph scatter wtdresid acres87, ylabel(-200(100)200, angle(0) nogrid) ytitle(Weighted Residuals) /// xtitle("Millions of Acres Devoted to Farms (1987)")