Note: This chapter uses a suite of commands, called spost, written by J. Scott Long and Jeremy Freese. The commands must be downloaded prior to their use, and this can be done by typing search spost in the Stata command line (see How can I use the search command to search for programs and get additional help? for more information about using search).
Table 3.1, page 37.
use https://stats.idre.ucla.edu/stat/stata/examples/long/binlfp2, clear describe Contains data from https://stats.idre.ucla.edu/stat/stata/examples/long/binlfp2.dta obs: 753 Data from 1976 PSID-T Mroz vars: 8 30 Apr 2001 16:17 size: 13,554 (99.9% of memory free) (_dta has notes) ------------------------------------------------------------------------------- storage display value variable name type format label variable label ------------------------------------------------------------------------------- lfp byte %9.0g lfplbl Paid Labor Force: 1=yes 0=no k5 byte %9.0g # kids < 6 k618 byte %9.0g # kids 6-18 age byte %9.0g Wife's age in years wc byte %9.0g collbl Wife College: 1=yes 0=no hc byte %9.0g collbl Husband College: 1=yes 0=no lwg float %9.0g Log of wife's estimated wages inc float %9.0g Family income excluding wife's ------------------------------------------------------------------------------- Sorted by: lfp sum Variable | Obs Mean Std. Dev. Min Max -------------+-------------------------------------------------------- lfp | 753 .5683931 .4956295 0 1 k5 | 753 .2377158 .523959 0 3 k618 | 753 1.353254 1.319874 0 8 age | 753 42.53785 8.072574 30 60 wc | 753 .2815405 .4500494 0 1 -------------+-------------------------------------------------------- hc | 753 .3917663 .4884694 0 1 lwg | 753 1.097115 .5875564 -2.054124 3.218876 inc | 753 20.12897 11.6348 -.0290001 96
Table 3.2, page 38.
NOTE: The x-standardized coefficient for K618 is -0.115 in the text, but is corrected in the errata for the book to be -0.015.
reg lfp k5 k618 age wc hc lwg inc Source | SS df MS Number of obs = 753 -------------+------------------------------ F( 7, 745) = 18.83 Model | 27.7657494 7 3.96653564 Prob > F = 0.0000 Residual | 156.962006 745 .210687257 R-squared = 0.1503 -------------+------------------------------ Adj R-squared = 0.1423 Total | 184.727756 752 .245648611 Root MSE = .45901 ------------------------------------------------------------------------------ lfp | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- k5 | -.294836 .0359027 -8.21 0.000 -.3653185 -.2243534 k618 | -.011215 .0139627 -0.80 0.422 -.038626 .016196 age | -.0127411 .0025377 -5.02 0.000 -.017723 -.0077591 wc | .163679 .0458284 3.57 0.000 .0737109 .2536471 hc | .018951 .042533 0.45 0.656 -.0645477 .1024498 lwg | .1227402 .0301915 4.07 0.000 .0634697 .1820107 inc | -.0067603 .0015708 -4.30 0.000 -.009844 -.0036767 _cons | 1.143548 .1270527 9.00 0.000 .894124 1.392972 ------------------------------------------------------------------------------ listcoef /*listcoef part of spostado*/ regress (N=753): Unstandardized and Standardized Estimates Observed SD: .49562951 SD of Error: .45900682 ------------------------------------------------------------------------------- lfp | b t P>|t| bStdX bStdY bStdXY SDofX -------------+----------------------------------------------------------------- k5 | -0.29484 -8.212 0.000 -0.1545 -0.5949 -0.3117 0.5240 k618 | -0.01122 -0.803 0.422 -0.0148 -0.0226 -0.0299 1.3199 age | -0.01274 -5.021 0.000 -0.1029 -0.0257 -0.2075 8.0726 wc | 0.16368 3.572 0.000 0.0737 0.3302 0.1486 0.4500 hc | 0.01895 0.446 0.656 0.0093 0.0382 0.0187 0.4885 lwg | 0.12274 4.065 0.000 0.0721 0.2476 0.1455 0.5876 inc | -0.00676 -4.304 0.000 -0.0787 -0.0136 -0.1587 11.6348 -------------------------------------------------------------------------------
Table 3.3, page 49.
logit lfp k5 k618 age wc hc lwg inc Iteration 0: log likelihood = -514.8732 Iteration 1: log likelihood = -454.32339 Iteration 2: log likelihood = -452.64187 Iteration 3: log likelihood = -452.63296 Iteration 4: log likelihood = -452.63296 Logit estimates Number of obs = 753 LR chi2(7) = 124.48 Prob > chi2 = 0.0000 Log likelihood = -452.63296 Pseudo R2 = 0.1209 ------------------------------------------------------------------------------ lfp | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- k5 | -1.462913 .1970006 -7.43 0.000 -1.849027 -1.076799 k618 | -.0645707 .0680008 -0.95 0.342 -.1978499 .0687085 age | -.0628706 .0127831 -4.92 0.000 -.0879249 -.0378162 wc | .8072738 .2299799 3.51 0.000 .3565215 1.258026 hc | .1117336 .2060397 0.54 0.588 -.2920969 .515564 lwg | .6046931 .1508176 4.01 0.000 .3090961 .9002901 inc | -.0344464 .0082084 -4.20 0.000 -.0505346 -.0183583 _cons | 3.18214 .6443751 4.94 0.000 1.919188 4.445092 ------------------------------------------------------------------------------ probit lfp k5 k618 age wc hc lwg inc Iteration 0: log likelihood = -514.8732 Iteration 1: log likelihood = -453.92167 Iteration 2: log likelihood = -452.69643 Iteration 3: log likelihood = -452.69496 Probit estimates Number of obs = 753 LR chi2(7) = 124.36 Prob > chi2 = 0.0000 Log likelihood = -452.69496 Pseudo R2 = 0.1208 ------------------------------------------------------------------------------ lfp | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- k5 | -.8747112 .1135583 -7.70 0.000 -1.097281 -.6521411 k618 | -.0385945 .0404893 -0.95 0.340 -.117952 .0407631 age | -.0378235 .0076093 -4.97 0.000 -.0527375 -.0229095 wc | .4883144 .1354873 3.60 0.000 .2227642 .7538645 hc | .0571704 .1240052 0.46 0.645 -.1858754 .3002161 lwg | .3656287 .0877792 4.17 0.000 .1935847 .5376727 inc | -.020525 .0047769 -4.30 0.000 -.0298875 -.0111626 _cons | 1.918422 .3806536 5.04 0.000 1.172355 2.66449 ------------------------------------------------------------------------------
Calculation of the Ratio column was done using the display command.
*constant display -1.463/-0.875 1.672 display 7.43/7.70 .96493506 *k5 display -0.065/-0.039 1.6666667 display 0.95/0.95 1 *k618 display -0.063/-0.038 1.6578947 display 4.92/4.97 .98993964 *age display 0.807/0.488 1.6536885 display 3.51/3.60 .975 *wc display 0.112/0.057 1.9649123 display 0.54/0.46 1.173913 *hc display 0.605/0.366 1.6530055 display 4.01/4.17 .9616307 *lwg display -0.034/-0.021 1.6190476 display 4.20/4.30 .97674419 *inc display 3.182/1.918 1.6590198 display 4.94/5.04 .98015873
Table 3.4, page 66.
probit lfp k5 k618 age wc hc lwg inc Iteration 0: log likelihood = -514.8732 Iteration 1: log likelihood = -453.92167 Iteration 2: log likelihood = -452.69643 Iteration 3: log likelihood = -452.69496 Probit estimates Number of obs = 753 LR chi2(7) = 124.36 Prob > chi2 = 0.0000 Log likelihood = -452.69496 Pseudo R2 = 0.1208 ------------------------------------------------------------------------------ lfp | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- k5 | -.8747112 .1135583 -7.70 0.000 -1.097281 -.6521411 k618 | -.0385945 .0404893 -0.95 0.340 -.117952 .0407631 age | -.0378235 .0076093 -4.97 0.000 -.0527375 -.0229095 wc | .4883144 .1354873 3.60 0.000 .2227642 .7538645 hc | .0571704 .1240052 0.46 0.645 -.1858754 .3002161 lwg | .3656287 .0877792 4.17 0.000 .1935847 .5376727 inc | -.020525 .0047769 -4.30 0.000 -.0298875 -.0111626 _cons | 1.918422 .3806536 5.04 0.000 1.172355 2.66449 ------------------------------------------------------------------------------ prchange, fromto probit: Changes in Predicted Probabilities for lfp from: to: dif: from: to: dif: from: to: dif: x=min x=max min->max x=0 x=1 0->1 x-1/2 x+1/2 -+1/2 k5 0.6573 0.0132 -0.6441 0.6573 0.3193 -0.3380 0.7371 0.4051 -0.3320 k618 0.5985 0.4763 -0.1221 0.5985 0.5835 -0.0150 0.5857 0.5706 -0.0151 age 0.7490 0.3216 -0.4274 0.9646 0.9615 -0.0031 0.5855 0.5708 -0.0148 wc 0.5238 0.7082 0.1844 0.5238 0.7082 0.1844 0.4813 0.6705 0.1892 hc 0.5694 0.5917 0.0223 0.5694 0.5917 0.0223 0.5669 0.5893 0.0224 lwg 0.1698 0.8347 0.6649 0.4192 0.5642 0.1450 0.5057 0.6480 0.1423 inc 0.7294 0.0869 -0.6425 0.7292 0.7223 -0.0068 0.5822 0.5741 -0.0080 from: to: dif: x-1/2sd x+1/2sd -+sd/2 MargEfct k5 0.6651 0.4873 -0.1778 -0.3422 k618 0.5881 0.5682 -0.0199 -0.0151 age 0.6368 0.5178 -0.1190 -0.0148 wc 0.5348 0.6206 0.0858 0.1911 hc 0.5727 0.5836 0.0109 0.0224 lwg 0.5358 0.6197 0.0839 0.1431 inc 0.6242 0.5310 -0.0932 -0.0080 NotInLF inLF Pr(y|x) 0.4218 0.5782 k5 k618 age wc hc lwg inc x= .237716 1.35325 42.5378 .281541 .391766 1.09711 20.129 sd(x)= .523959 1.31987 8.07257 .450049 .488469 .587556 11.6348
Figure 3.10, page 67. Probability Labor Force Participation by Age and Wife’s Education
logit lfp k5 k618 age wc hc lwg inc Iteration 0: log likelihood = -514.8732 Iteration 1: log likelihood = -454.32339 Iteration 2: log likelihood = -452.64187 Iteration 3: log likelihood = -452.63296 Iteration 4: log likelihood = -452.63296 Logit estimates Number of obs = 753 LR chi2(7) = 124.48 Prob > chi2 = 0.0000 Log likelihood = -452.63296 Pseudo R2 = 0.1209 ------------------------------------------------------------------------------ lfp | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- k5 | -1.462913 .1970006 -7.43 0.000 -1.849027 -1.076799 k618 | -.0645707 .0680008 -0.95 0.342 -.1978499 .0687085 age | -.0628706 .0127831 -4.92 0.000 -.0879249 -.0378162 wc | .8072738 .2299799 3.51 0.000 .3565215 1.258026 hc | .1117336 .2060397 0.54 0.588 -.2920969 .515564 lwg | .6046931 .1508176 4.01 0.000 .3090961 .9002901 inc | -.0344464 .0082084 -4.20 0.000 -.0505346 -.0183583 _cons | 3.18214 .6443751 4.94 0.000 1.919188 4.445092 ------------------------------------------------------------------------------ prgen age, from(30) to (60) gen(wc_yes) x(wc=1) rest(mean) n(7) logit: Predicted values as age varies from 30 to 60. k5 k618 age wc hc lwg inc x= .2377158 1.3532537 42.537849 1 .39176627 1.0971148 20.128965 label var wc_yesp1 "Attended College" prgen age, from(30) to (60) gen(wc_no) x(wc=0) rest(mean) n(7) logit: Predicted values as age varies from 30 to 60. k5 k618 age wc hc lwg inc x= .2377158 1.3532537 42.537849 0 .39176627 1.0971148 20.128965 label var wc_nop1 "Did Not Attended College" graph twoway (scatter wc_yesp1 wc_nop1 wc_nox, msymbol(Oh Sh) c(l l) xtitle("Age") /// ytitle("Pr(ln Labor Force)") xlabel(30 35 40 45 50 55 60) ylabel(0 .25 .50 .75 1) )
Figure 3.11, page 68.
logit lfp k5 k618 age wc hc lwg inc Iteration 0: log likelihood = -514.8732 Iteration 1: log likelihood = -454.32339 Iteration 2: log likelihood = -452.64187 Iteration 3: log likelihood = -452.63296 Iteration 4: log likelihood = -452.63296 Logit estimates Number of obs = 753 LR chi2(7) = 124.48 Prob > chi2 = 0.0000 Log likelihood = -452.63296 Pseudo R2 = 0.1209 ------------------------------------------------------------------------------ lfp | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- k5 | -1.462913 .1970006 -7.43 0.000 -1.849027 -1.076799 k618 | -.0645707 .0680008 -0.95 0.342 -.1978499 .0687085 age | -.0628706 .0127831 -4.92 0.000 -.0879249 -.0378162 wc | .8072738 .2299799 3.51 0.000 .3565215 1.258026 hc | .1117336 .2060397 0.54 0.588 -.2920969 .515564 lwg | .6046931 .1508176 4.01 0.000 .3090961 .9002901 inc | -.0344464 .0082084 -4.20 0.000 -.0505346 -.0183583 _cons | 3.18214 .6443751 4.94 0.000 1.919188 4.445092 ------------------------------------------------------------------------------ prgen inc, from(0) to (100) gen(p30) x(age=30) rest(mean) n(6) logit: Predicted values as inc varies from 0 to 100. k5 k618 age wc hc lwg inc x= .2377158 1.3532537 30 .2815405 .39176627 1.0971148 20.128965 label var p30p1 "Age 30" prgen inc, from(0) to (100) gen(p40) x(age=40) rest(mean) n(6) logit: Predicted values as inc varies from 0 to 100. k5 k618 age wc hc lwg inc x= .2377158 1.3532537 40 .2815405 .39176627 1.0971148 20.128965 label var p40p1 "Age 40" prgen inc, from(0) to (100) gen(p50) x(age=50) rest(mean) n(6) logit: Predicted values as inc varies from 0 to 100. k5 k618 age wc hc lwg inc x= .2377158 1.3532537 50 .2815405 .39176627 1.0971148 20.128965 label var p50p1 "Age 50" prgen inc, from(0) to (100) gen(p60) x(age=60) rest(mean) n(6) logit: Predicted values as inc varies from 0 to 100. k5 k618 age wc hc lwg inc x= .2377158 1.3532537 60 .2815405 .39176627 1.0971148 20.128965 label var p60p1 "Age 60" graph twoway (scatter p30p1 p40p1 p50p1 p60p1 p60x, msymbol(Oh Dh Sh Th) c(l l l l) xtitle("Family Income") /// ytitle("Pr(ln Labor Force)") xlabel(0(20)100) ylabel(0 .25 .50 .75 1) )
Table 3.5, page 69. Probability of Employment by College Attendance and the Number of Young Children in the Probit Model
probit lfp k5 k618 age wc hc lwg inc Iteration 0: log likelihood = -514.8732 Iteration 1: log likelihood = -453.92167 Iteration 2: log likelihood = -452.69643 Iteration 3: log likelihood = -452.69496 Probit estimates Number of obs = 753 LR chi2(7) = 124.36 Prob > chi2 = 0.0000 Log likelihood = -452.69496 Pseudo R2 = 0.1208 ------------------------------------------------------------------------------ lfp | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- k5 | -.8747112 .1135583 -7.70 0.000 -1.097281 -.6521411 k618 | -.0385945 .0404893 -0.95 0.340 -.117952 .0407631 age | -.0378235 .0076093 -4.97 0.000 -.0527375 -.0229095 wc | .4883144 .1354873 3.60 0.000 .2227642 .7538645 hc | .0571704 .1240052 0.46 0.645 -.1858754 .3002161 lwg | .3656287 .0877792 4.17 0.000 .1935847 .5376727 inc | -.020525 .0047769 -4.30 0.000 -.0298875 -.0111626 _cons | 1.918422 .3806536 5.04 0.000 1.172355 2.66449 ------------------------------------------------------------------------------ prtab k5 wc probit: Predicted probabilities of positive outcome for lfp ---------------------------- | Wife College: # kids < | 1=yes 0=no 6 | NoCol College ----------+----------------- 0 | 0.6055 0.7752 1 | 0.2719 0.4527 2 | 0.0692 0.1602 3 | 0.0092 0.0309 ---------------------------- k5 k618 age wc hc lwg inc x= .2377158 1.3532537 42.537849 .2815405 .39176627 1.0971148 20.128965
NOTE: The difference column was generated using the display command.
display 0.6055 - 0.7752 -.1697 display 0.2719 - 0.4527 -.1808 display 0.0692 - 0.1602 -.091 display 0.0092 - 0.0309 -.0217
Table 3.6, page 71.
probit lfp k5 k618 age wc hc lwg inc Iteration 0: log likelihood = -514.8732 Iteration 1: log likelihood = -453.92167 Iteration 2: log likelihood = -452.69643 Iteration 3: log likelihood = -452.69496 Probit estimates Number of obs = 753 LR chi2(7) = 124.36 Prob > chi2 = 0.0000 Log likelihood = -452.69496 Pseudo R2 = 0.1208 ------------------------------------------------------------------------------ lfp | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- k5 | -.8747112 .1135583 -7.70 0.000 -1.097281 -.6521411 k618 | -.0385945 .0404893 -0.95 0.340 -.117952 .0407631 age | -.0378235 .0076093 -4.97 0.000 -.0527375 -.0229095 wc | .4883144 .1354873 3.60 0.000 .2227642 .7538645 hc | .0571704 .1240052 0.46 0.645 -.1858754 .3002161 lwg | .3656287 .0877792 4.17 0.000 .1935847 .5376727 inc | -.020525 .0047769 -4.30 0.000 -.0298875 -.0111626 _cons | 1.918422 .3806536 5.04 0.000 1.172355 2.66449 ------------------------------------------------------------------------------ listcoef, std probit (N=753): Unstandardized and Standardized Estimates Observed SD: .49562951 Latent SD: 1.1524248 ------------------------------------------------------------------------------- lfp | b z P>|z| bStdX bStdY bStdXY SDofX -------------+----------------------------------------------------------------- k5 | -0.87471 -7.703 0.000 -0.4583 -0.7590 -0.3977 0.5240 k618 | -0.03859 -0.953 0.340 -0.0509 -0.0335 -0.0442 1.3199 age | -0.03782 -4.971 0.000 -0.3053 -0.0328 -0.2649 8.0726 wc | 0.48831 3.604 0.000 0.2198 0.4237 0.1907 0.4500 hc | 0.05717 0.461 0.645 0.0279 0.0496 0.0242 0.4885 lwg | 0.36563 4.165 0.000 0.2148 0.3173 0.1864 0.5876 inc | -0.02053 -4.297 0.000 -0.2388 -0.0178 -0.2072 11.6348 -------------------------------------------------------------------------------
Table 3.7, page 74.
probit lfp k5 k618 age wc hc lwg inc Iteration 0: log likelihood = -514.8732 Iteration 1: log likelihood = -453.92167 Iteration 2: log likelihood = -452.69643 Iteration 3: log likelihood = -452.69496 Probit estimates Number of obs = 753 LR chi2(7) = 124.36 Prob > chi2 = 0.0000 Log likelihood = -452.69496 Pseudo R2 = 0.1208 ------------------------------------------------------------------------------ lfp | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- k5 | -.8747112 .1135583 -7.70 0.000 -1.097281 -.6521411 k618 | -.0385945 .0404893 -0.95 0.340 -.117952 .0407631 age | -.0378235 .0076093 -4.97 0.000 -.0527375 -.0229095 wc | .4883144 .1354873 3.60 0.000 .2227642 .7538645 hc | .0571704 .1240052 0.46 0.645 -.1858754 .3002161 lwg | .3656287 .0877792 4.17 0.000 .1935847 .5376727 inc | -.020525 .0047769 -4.30 0.000 -.0298875 -.0111626 _cons | 1.918422 .3806536 5.04 0.000 1.172355 2.66449 ------------------------------------------------------------------------------ prchange probit: Changes in Predicted Probabilities for lfp min->max 0->1 -+1/2 -+sd/2 MargEfct k5 -0.6441 -0.3380 -0.3320 -0.1778 -0.3422 k618 -0.1221 -0.0150 -0.0151 -0.0199 -0.0151 age -0.4274 -0.0031 -0.0148 -0.1190 -0.0148 wc 0.1844 0.1844 0.1892 0.0858 0.1911 hc 0.0223 0.0223 0.0224 0.0109 0.0224 lwg 0.6649 0.1450 0.1423 0.0839 0.1431 inc -0.6425 -0.0068 -0.0080 -0.0932 -0.0080 NotInLF inLF Pr(y|x) 0.4218 0.5782 k5 k618 age wc hc lwg inc x= .237716 1.35325 42.5378 .281541 .391766 1.09711 20.129 sd(x)= .523959 1.31987 8.07257 .450049 .488469 .587556 11.6348
NOTE: The ‘average’ column is the marginal effects averaged over all observations to illustrate the fact that they are close to the marginals computed when all variables are held at their mean. Therefore, we didn’t calculate the ‘average’ column.
Table 3.8, page 78.
probit lfp k5 k618 age wc hc lwg inc Iteration 0: log likelihood = -514.8732 Iteration 1: log likelihood = -453.92167 Iteration 2: log likelihood = -452.69643 Iteration 3: log likelihood = -452.69496 Probit estimates Number of obs = 753 LR chi2(7) = 124.36 Prob > chi2 = 0.0000 Log likelihood = -452.69496 Pseudo R2 = 0.1208 ------------------------------------------------------------------------------ lfp | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- k5 | -.8747112 .1135583 -7.70 0.000 -1.097281 -.6521411 k618 | -.0385945 .0404893 -0.95 0.340 -.117952 .0407631 age | -.0378235 .0076093 -4.97 0.000 -.0527375 -.0229095 wc | .4883144 .1354873 3.60 0.000 .2227642 .7538645 hc | .0571704 .1240052 0.46 0.645 -.1858754 .3002161 lwg | .3656287 .0877792 4.17 0.000 .1935847 .5376727 inc | -.020525 .0047769 -4.30 0.000 -.0298875 -.0111626 _cons | 1.918422 .3806536 5.04 0.000 1.172355 2.66449 ------------------------------------------------------------------------------ prchange, help probit: Changes in Predicted Probabilities for lfp min->max 0->1 -+1/2 -+sd/2 MargEfct k5 -0.6441 -0.3380 -0.3320 -0.1778 -0.3422 k618 -0.1221 -0.0150 -0.0151 -0.0199 -0.0151 age -0.4274 -0.0031 -0.0148 -0.1190 -0.0148 wc 0.1844 0.1844 0.1892 0.0858 0.1911 hc 0.0223 0.0223 0.0224 0.0109 0.0224 lwg 0.6649 0.1450 0.1423 0.0839 0.1431 inc -0.6425 -0.0068 -0.0080 -0.0932 -0.0080 NotInLF inLF Pr(y|x) 0.4218 0.5782 k5 k618 age wc hc lwg inc x= .237716 1.35325 42.5378 .281541 .391766 1.09711 20.129 sd(x)= .523959 1.31987 8.07257 .450049 .488469 .587556 11.6348 Pr(y|x): probability of observing each y for specified x values Avg|Chg|: average of absolute value of the change across categories Min->Max: change in predicted probability as x changes from its minimum to its maximum 0->1: change in predicted probability as x changes from 0 to 1 -+1/2: change in predicted probability as x changes from 1/2 unit below base value to 1/2 unit above -+sd/2: change in predicted probability as x changes from 1/2 standard dev below base to 1/2 standard dev above MargEfct: the partial derivative of the predicted probability/rate with respect to a given independent variable
Table 3.9, page 81.
logit lfp k5 k618 age wc hc lwg inc Iteration 0: log likelihood = -514.8732 Iteration 1: log likelihood = -454.32339 Iteration 2: log likelihood = -452.64187 Iteration 3: log likelihood = -452.63296 Iteration 4: log likelihood = -452.63296 Logit estimates Number of obs = 753 LR chi2(7) = 124.48 Prob > chi2 = 0.0000 Log likelihood = -452.63296 Pseudo R2 = 0.1209 ------------------------------------------------------------------------------ lfp | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- k5 | -1.462913 .1970006 -7.43 0.000 -1.849027 -1.076799 k618 | -.0645707 .0680008 -0.95 0.342 -.1978499 .0687085 age | -.0628706 .0127831 -4.92 0.000 -.0879249 -.0378162 wc | .8072738 .2299799 3.51 0.000 .3565215 1.258026 hc | .1117336 .2060397 0.54 0.588 -.2920969 .515564 lwg | .6046931 .1508176 4.01 0.000 .3090961 .9002901 inc | -.0344464 .0082084 -4.20 0.000 -.0505346 -.0183583 _cons | 3.18214 .6443751 4.94 0.000 1.919188 4.445092 ------------------------------------------------------------------------------ listcoef logit (N=753): Factor Change in Odds Odds of: inLF vs NotInLF ---------------------------------------------------------------------- lfp | b z P>|z| e^b e^bStdX SDofX -------------+-------------------------------------------------------- k5 | -1.46291 -7.426 0.000 0.2316 0.4646 0.5240 k618 | -0.06457 -0.950 0.342 0.9375 0.9183 1.3199 age | -0.06287 -4.918 0.000 0.9391 0.6020 8.0726 wc | 0.80727 3.510 0.000 2.2418 1.4381 0.4500 hc | 0.11173 0.542 0.588 1.1182 1.0561 0.4885 lwg | 0.60469 4.009 0.000 1.8307 1.4266 0.5876 inc | -0.03445 -4.196 0.000 0.9661 0.6698 11.6348 ----------------------------------------------------------------------