Note: This chapter uses a suite of commands, called spost, written by J. Scott Long and Jeremy Freese. The commands must be downloaded prior to their use, and this can be done by typing search spost in the Stata command line (see How can I use the search command to search for programs and get additional help? for more information about using search).
Table 7.1, page 191.
use https://stats.idre.ucla.edu/stat/stata/examples/long/tobjob2, clear quietly reg jobcen fem phd ment fel art cit listcoef, std regress (N=408): Unstandardized and Standardized Estimates Observed SD: .97360294 SD of Error: .8717482 ------------------------------------------------------------------------------- jobcen | b t P>|t| bStdX bStdY bStdXY SDofX -------------+----------------------------------------------------------------- fem | -0.13919 -1.543 0.124 -0.0680 -0.1430 -0.0698 0.4883 phd | 0.27268 5.529 0.000 0.2601 0.2801 0.2671 0.9538 ment | 0.00119 1.692 0.091 0.0778 0.0012 0.0799 65.5299 fel | 0.23414 2.469 0.014 0.1139 0.2405 0.1170 0.4866 art | 0.02280 0.789 0.430 0.0514 0.0234 0.0528 2.2561 cit | 0.00448 2.275 0.023 0.1481 0.0046 0.1521 33.0599 ------------------------------------------------------------------------------- quietly reg jobcen fem phd ment fel art cit if jobcen ~= 1 listcoef, std regress (N=309): Unstandardized and Standardized Estimates Observed SD: .77904266 SD of Error: .70309389 ------------------------------------------------------------------------------- jobcen | b t P>|t| bStdX bStdY bStdXY SDofX -------------+----------------------------------------------------------------- fem | 0.10145 1.187 0.236 0.0481 0.1302 0.0618 0.4744 phd | 0.29738 6.361 0.000 0.2758 0.3817 0.3540 0.9274 ment | 0.00078 1.273 0.204 0.0541 0.0010 0.0695 69.5468 fel | 0.14053 1.565 0.119 0.0662 0.1804 0.0850 0.4710 art | 0.00590 0.238 0.812 0.0142 0.0076 0.0182 2.4000 cit | 0.00210 1.271 0.205 0.0760 0.0027 0.0976 36.1466 ------------------------------------------------------------------------------- quietly tobit jobcen fem phd ment fel art cit, ll(1) listcoef, std tobit (N=408): Unstandardized and Standardized Estimates Observed SD: .97360294 Latent SD: 1.21966 SD of Error: 1.087237 ------------------------------------------------------------------------------- jobcen | b t P>|t| bStdX bStdY bStdXY SDofX -------------+----------------------------------------------------------------- fem | -0.23685 -2.032 0.043 -0.1156 -0.1942 -0.0948 0.4883 phd | 0.32258 5.047 0.000 0.3077 0.2645 0.2523 0.9538 ment | 0.00134 1.514 0.131 0.0880 0.0011 0.0722 65.5299 fel | 0.32527 2.656 0.008 0.1583 0.2667 0.1298 0.4866 art | 0.03391 0.929 0.353 0.0765 0.0278 0.0627 2.2561 cit | 0.00509 2.057 0.040 0.1683 0.0042 0.1380 33.0599 -------------------------------------------------------------------------------
Figure 7.6, page 200.
Note: This graph was created in three steps since the prgen command after tobit produces expected values rather than probabilities.
Step 1: Create a data set for each of the categories, female fellow (ff), female nonfellow(fnf), male fellow(mf) and male nonfellow(mnf) where the level of PhD varies from 1 to 5 by .5 and the other variables in the model, ment, art and cit are held at there mean. The four data sets where created from the data set figure76 where for each respective data set, fem and fel where varied to define each case type.
Step 2: Run the full tobit model and use that model for out-of-sample prediction for the four data sets, ff, fnf, mf and mnf, where we predict the probability of being censored with the command predict varname, pr(.,1) as well as sorting the observations.
Step 3: Merge all the data sets together by the phd variable and graph the probability of censor to phd level.
Step 1.
clear input phd 1 1.5 2 2.5 3 3.5 4 4.5 5 end gen ment = 45.47058 gen art = 2.276961 gen cit = 21.71569 save figure76 file figure76.dta saved *create data for female fellow use figure76 gen fem =1 gen fel =1 save ff file ff.dta saved *create data for female nonfellow use figure76 gen fem =1 gen fel =0 save fnf file fnf.dta saved *create data for male fellow use figure76 gen fem =0 gen fel =1 save mf file mf.dta saved *create data for male nonfellow use figure76 gen fem =0 gen fel =0 save mnf file mnf.dta saved
Step 2.
use https://stats.idre.ucla.edu/stat/stata/examples/long/tobjob2, clear (Academic Biochemists / S Long) quietly tobit jobcen fem phd ment fel art cit, ll(1) use ff, clear predict ffcen, pr(.,1) label var ffcen "female fellow" sort phd save ff, replace file ff.dta saved use fnf, clear predict fnfcen, pr(.,1) label var fnfcen "female nonfellow" sort phd save fnf,replace file fnf.dta saved use mf, clear predict mfcen, pr(.,1) label var mfcen "male fellow" sort phd save mf,replace file mf.dta saved use mnf, clear predict mnfcen, pr(.,1) label var mnfcen "male nonfellow" sort phd save mnf,replace file mnf.dta saved use ff, clear merge phd using fnf mf mnf graph twoway (scatter ffcen fnfcen mfcen mnfcen phd, c(l l l l) /// xtitle("Ph.D. Prestige") ytitle("Pr(Censored)"))
Table 7.1, page 215. Hausman and Wise’s OLS and ML Estimates From a Sample With Truncation.
NOTE: This has been skipped because we do not have the data.