use https://stats.idre.ucla.edu/stat/stata/examples/methods_matter/chapter7/sfa
Descriptive statistics for the variable wattack. Notice the floor effect which cannot be resolved by a straightforward transformation. (Note these analyses are not shown in the text.)
sum wattack, detail word attack posttest ------------------------------------------------------------- Percentiles Smallest 1% 440 440 5% 440 440 10% 449 440 Obs 2334 25% 466 440 Sum of Wgt. 2334 50% 479 Mean 478.5193 Largest Std. Dev. 19.87872 75% 492 537 90% 503 537 Variance 395.1636 95% 509 545 Skewness -.165475 99% 525 545 Kurtosis 2.801111 graph box wattack, medtype(line) ytitle(Word Attack Scores) ysize(3) xsize(2)
Descriptive analyses of wattack by school (schid). Note the floor effect is present in most schools. (Not shown in text.)
table schid, contents(mean wattack sd wattack min wattack max wattack freq) -------------------------------------------------------------------------------- school id | mean(watt~k) sd(wattack) min(wattack) max(wattack) Freq. ----------+--------------------------------------------------------------------- 1 | 475.731 16.15988 440 519 52 2 | 486.603 15.31063 449 532 116 3 | 491.368 16.8469 449 532 68 4 | 462.912 16.55179 440 494 34 5 | 495.085 14.96783 464 532 47 6 | 475.115 18.07763 440 507 87 7 | 491.53 16.19119 440 525 83 8 | 467.5 13.9412 440 494 22 9 | 471.105 17.6963 440 517 95 10 | 474.556 19.07744 440 498 27 11 | 472.186 16.68797 440 498 43 12 | 478.963 13.21852 449 501 27 13 | 483.871 14.56414 440 532 62 14 | 469.889 17.18767 440 515 36 15 | 479.556 15.97128 440 513 54 16 | 486.75 14.86967 456 511 36 17 | 472.951 22.71998 440 517 41 18 | 492.596 17.52095 440 537 109 19 | 468.739 23.85604 440 517 23 20 | 484.75 11.13494 466 519 20 21 | 487.231 19.07008 440 517 134 22 | 480.274 18.01826 440 532 106 23 | 495.333 12.11611 478 528 36 24 | 470.771 17.15045 440 507 48 25 | 476.019 23.51344 440 537 52 26 | 480.97 18.02645 440 525 66 27 | 462.951 19.46015 440 503 41 28 | 480.839 15.78236 440 506 56 29 | 488.1 15.19832 464 504 10 30 | 469.625 22.41857 440 545 24 31 | 471.525 17.96627 440 504 61 32 | 474.724 17.77224 440 504 58 33 | 478.878 19.19921 440 513 41 34 | 479.418 19.18507 440 545 79 35 | 474.421 18.73494 440 507 57 36 | 476.929 20.63214 440 532 85 37 | 487.19 16.92756 449 519 58 38 | 468.189 21.31749 440 515 37 39 | 464.361 16.32553 440 503 36 40 | 459.252 16.97395 440 498 107 41 | 468.933 17.35362 440 507 60 -------------------------------------------------------------------------------- graph box wattack, medtype(line) over(schid) ytitle(Word Attack Scores) ysize(2) xsize(4)
Descriptive analyses of wattack by experimental condition (sfa). (Not shown in text.)
bysort sfa: sum wattack, detail ------------------------------------------------------------------------------------------ -> sfa = 0 word attack posttest ------------------------------------------------------------- Percentiles Smallest 1% 440 440 5% 440 440 10% 440 440 Obs 1118 25% 464 440 Sum of Wgt. 1118 50% 476 Mean 474.8247 Largest Std. Dev. 20.05239 75% 488 532 90% 500 537 Variance 402.0982 95% 506 545 Skewness -.0207681 99% 525 545 Kurtosis 2.808253 ------------------------------------------------------------------------------------------ -> sfa = 1 word attack posttest ------------------------------------------------------------- Percentiles Smallest 1% 440 440 5% 440 440 10% 456 440 Obs 1216 25% 471 440 Sum of Wgt. 1216 50% 482 Mean 481.9161 Largest Std. Dev. 19.10511 75% 494 532 90% 506 532 Variance 365.0053 95% 511 532 Skewness -.280702 99% 522 537 Kurtosis 2.936778 graph box wattack, medtype(line) over(sfa) ytitle(Word Attack Scores) ysize(3) xsize(2)
Model #1 from Table 7.1 on page 114.
xtreg wattack, i(schid) Random-effects GLS regression Number of obs = 2334 Group variable: schid Number of groups = 41 R-sq: within = 0.0000 Obs per group: min = 10 between = 0.0000 avg = 56.9 overall = 0.0000 max = 134 Random effects u_i ~ Gaussian Wald chi2(0) = . corr(u_i, X) = 0 (assumed) Prob > chi2 = . ------------------------------------------------------------------------------ wattack | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- _cons | 477.5356 1.447118 329.99 0.000 474.6994 480.3719 -------------+---------------------------------------------------------------- sigma_u | 8.8705267 sigma_e | 17.725757 rho | .20027618 (fraction of variance due to u_i) ------------------------------------------------------------------------------ * variance of sigma u display e(sigma_u)^2 78.686244 * variance of sigma e display e(sigma_e)^2 314.20244
Model #2 from Table 7.1 on page 114.
xtreg wattack sfa, i(schid) Random-effects GLS regression Number of obs = 2334 Group variable: schid Number of groups = 41 R-sq: within = 0.0000 Obs per group: min = 10 between = 0.0486 avg = 56.9 overall = 0.0318 max = 134 Random effects u_i ~ Gaussian Wald chi2(1) = 2.33 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.1271 ------------------------------------------------------------------------------ wattack | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- sfa | 4.362971 2.859467 1.53 0.127 -1.241483 9.967424 _cons | 475.3036 2.045759 232.34 0.000 471.294 479.3132 -------------+---------------------------------------------------------------- sigma_u | 8.7525004 sigma_e | 17.725757 rho | .19601985 (fraction of variance due to u_i) ------------------------------------------------------------------------------ * variance sigma u display e(sigma_u)^2 76.606263 * variance sigma e display e(sigma_e)^2 314.20244
Model #3 from Table 7.1 on page 114. The variable sch_ppvt is the within-school average of ppvt based on the full sample, rather than the subsample analyzed here, see footnote 15 on page 127.
xtreg wattack sfa sch_ppvt, i(schid) Random-effects GLS regression Number of obs = 2334 Group variable: schid Number of groups = 41 R-sq: within = 0.0000 Obs per group: min = 10 between = 0.3820 avg = 56.9 overall = 0.0914 max = 134 Random effects u_i ~ Gaussian Wald chi2(2) = 23.58 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ wattack | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- sfa | 3.572224 2.33971 1.53 0.127 -1.013523 8.15797 sch_ppvt | .6228176 .139824 4.45 0.000 .3487675 .8968676 _cons | 419.8154 12.55807 33.43 0.000 395.202 444.4287 -------------+---------------------------------------------------------------- sigma_u | 6.9693079 sigma_e | 17.725757 rho | .13388857 (fraction of variance due to u_i) ------------------------------------------------------------------------------ * variance sigma u display e(sigma_u)^2 48.571253 * variance sigma e display e(sigma_e)^2 314.20244
Model #3 using the within-school averages of prior ppvt score (new variable schavgppvt) from the analytic subsample instead of sch_ppvt. (Not shown in text, this analysis is mentioned in footnote 15 on page 127.)
bysort schid: egen schavgppvt = mean(ppvt) xtreg wattack sfa schavgppvt, i(schid) Random-effects GLS regression Number of obs = 2334 Group variable: schid Number of groups = 41 R-sq: within = 0.0000 Obs per group: min = 10 between = 0.4003 avg = 56.9 overall = 0.0977 max = 134 Random effects u_i ~ Gaussian Wald chi2(2) = 25.57 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ wattack | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- sfa | 3.218344 2.311869 1.39 0.164 -1.312837 7.749524 schavgppvt | .6023257 .1293094 4.66 0.000 .348884 .8557674 _cons | 421.6086 11.6332 36.24 0.000 398.8079 444.4092 -------------+---------------------------------------------------------------- sigma_u | 6.8490081 sigma_e | 17.725757 rho | .12990151 (fraction of variance due to u_i) ------------------------------------------------------------------------------
The following models show various ways of controlling for individual- and school-level ppvt. None of the models shown below are displayed in the text.
Controlling for individual-level ppvt, deviated from the grand mean (new variable ppvt_devgm).
sum ppvt Variable | Obs Mean Std. Dev. Min Max -------------+-------------------------------------------------------- ppvt | 2334 90.4006 15.00082 40 144 gen ppvt_devgm = ppvt-90.4006 xtreg wattack sfa ppvt_devgm, i(schid) Random-effects GLS regression Number of obs = 2334 Group variable: schid Number of groups = 41 R-sq: within = 0.1101 Obs per group: min = 10 between = 0.3960 avg = 56.9 overall = 0.1820 max = 134 Random effects u_i ~ Gaussian Wald chi2(2) = 308.21 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ wattack | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- sfa | 3.440921 2.297268 1.50 0.134 -1.061642 7.943485 ppvt_devgm | .4851754 .0278075 17.45 0.000 .4306737 .5396771 _cons | 475.9076 1.642957 289.67 0.000 472.6875 479.1278 -------------+---------------------------------------------------------------- sigma_u | 6.9082397 sigma_e | 16.725172 rho | .14574142 (fraction of variance due to u_i) ------------------------------------------------------------------------------
Controlling for individual-level ppvt by including deviations of individual scores from school-average scores (new variable ppvt_devsm) and school-average scores from the grand mean (new variable schavgppvt_devgm).
gen ppvt_devsm = ppvt-schavgppvt gen schavgppvt_devgm = schavgppvt-90.4006 xtreg wattack sfa ppvt_devsm schavgppvt_devgm, i(schid) Random-effects GLS regression Number of obs = 2334 Group variable: schid Number of groups = 41 R-sq: within = 0.1101 Obs per group: min = 10 between = 0.4004 avg = 56.9 overall = 0.1835 max = 134 Random effects u_i ~ Gaussian Wald chi2(3) = 308.73 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ wattack | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- sfa | 3.187396 2.331659 1.37 0.172 -1.382572 7.757363 ppvt_devsm | .4794657 .0284703 16.84 0.000 .4236648 .5352666 schavgppvt~m | .6030759 .1303864 4.63 0.000 .3475233 .8586285 _cons | 476.0634 1.664848 285.95 0.000 472.8003 479.3264 -------------+---------------------------------------------------------------- sigma_u | 6.9726021 sigma_e | 16.725172 rho | .14806577 (fraction of variance due to u_i) ------------------------------------------------------------------------------
Controlling for school-average ppvt deviated from the grand mean (schavgppvt_devgm).
xtreg wattack sfa schavgppvt_devgm, i(schid) Random-effects GLS regression Number of obs = 2334 Group variable: schid Number of groups = 41 R-sq: within = 0.0000 Obs per group: min = 10 between = 0.4003 avg = 56.9 overall = 0.0977 max = 134 Random effects u_i ~ Gaussian Wald chi2(2) = 25.57 corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ wattack | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- sfa | 3.218344 2.311869 1.39 0.164 -1.312837 7.749524 schavgppvt~m | .6023257 .1293094 4.66 0.000 .348884 .8557674 _cons | 476.0592 1.650323 288.46 0.000 472.8246 479.2937 -------------+---------------------------------------------------------------- sigma_u | 6.8490081 sigma_e | 17.725757 rho | .12990151 (fraction of variance due to u_i) ------------------------------------------------------------------------------