use https://stats.idre.ucla.edu/stat/stata/examples/methods_matter/chapter8/dynarski, clear svyset, clear svyset [pw=wt88], psu(hhid) pweight: wt88 VCE: linearized Single unit: missing Strata 1: <one> SU 1: hhid FPC 1: <zero>
Descriptive statistics and cross-tabulations for key variables. (Not shown in text.)
svy: mean coll (running mean on estimation sample) Survey: Mean estimation Number of strata = 1 Number of obs = 3986 Number of PSUs = 3123 Population size = 1302933368 Design df = 3122 -------------------------------------------------------------- | Linearized | Mean Std. Err. [95% Conf. Interval] -------------+------------------------------------------------ coll | .4943504 .0105154 .4737326 .5149681 -------------------------------------------------------------- tabulate fatherdec yearsr Father deceased by | Year in which a senior age 18 | 79 80 81 82 83 | Total --------------------+-------------------------------------------------------+---------- Father not deceased | 892 986 867 828 222 | 3,795 Father deceased | 41 44 52 41 13 | 191 --------------------+-------------------------------------------------------+---------- Total | 933 1,030 919 869 235 | 3,986
(a) Direct Estimate shown in Table 8.1 on page 143. The means of coll are shown in the rows labeled _subpop_3 and _subpop_4. This output also replicates part of the table of variable means and differences from the Dynarski article referenced in the chapter (not shown in the text).
svy: mean coll, over(fatherdec offer) (running mean on estimation sample) Survey: Mean estimation Number of strata = 1 Number of obs = 3986 Number of PSUs = 3123 Population size = 1302933368 Design df = 3122 Over: fatherdec offer _subpop_1: Father not deceased 0 _subpop_2: Father not deceased 1 _subpop_3: Father deceased 0 _subpop_4: Father deceased 1 -------------------------------------------------------------- | Linearized Over | Mean Std. Err. [95% Conf. Interval] -------------+------------------------------------------------ coll | _subpop_1 | .4756935 .0188649 .4387046 .5126825 _subpop_2 | .5017016 .0121735 .4778327 .5255706 _subpop_3 | .3522178 .0812446 .1929197 .511516 _subpop_4 | .5604556 .0527439 .4570394 .6638718 -------------+------------------------------------------------
(b) Linear-Probability Model (OLS) Estimate shown in Table 8.1 on page 143.
svy if fatherdec==1 : regress coll offer (running regress on estimation sample) Survey: Linear regression Number of strata = 1 Number of obs = 191 Number of PSUs = 172 Population size = 51656801 Design df = 171 F( 1, 171) = 4.96 Prob > F = 0.0272 R-squared = 0.0358 ------------------------------------------------------------------------------ | Linearized coll | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- offer | .2082378 .0935031 2.23 0.027 .0236689 .3928067 _cons | .3522178 .0814687 4.32 0.000 .191404 .5130317 ------------------------------------------------------------------------------
Figure 8.1 on page 155.
recode offer (0=1) (1=0), gen(post) twoway lfit coll post [pw=wt88], by(fatherdec, note("")) /// ytitle("P{college}") yscale(range(.3 .6)) /// xtitle("Year") xlabel(0 "Pre-1981" 1 "Post-1981") xscale(range(-.25 1.25))
Table 8.2 on page 157, labeled “(First Diff)”. (Note this replicates the last regression model.)
svy if fatherdec==1 : regress coll offer (running regress on estimation sample) Survey: Linear regression Number of strata = 1 Number of obs = 191 Number of PSUs = 172 Population size = 51656801 Design df = 171 F( 1, 171) = 4.96 Prob > F = 0.0272 R-squared = 0.0358 ------------------------------------------------------------------------------ | Linearized coll | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- offer | .2082378 .0935031 2.23 0.027 .0236689 .3928067 _cons | .3522178 .0814687 4.32 0.000 .191404 .5130317 ------------------------------------------------------------------------------
Table 8.2 on page 157, labeled “(Second Diff)”.
svy if fatherdec==0 : regress coll offer (running regress on estimation sample) Survey: Linear regression Number of strata = 1 Number of obs = 3795 Number of PSUs = 2984 Population size = 1251276567 Design df = 2983 F( 1, 2983) = 1.50 Prob > F = 0.2214 R-squared = 0.0006 ------------------------------------------------------------------------------ | Linearized coll | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- offer | .0260081 .0212645 1.22 0.221 -.0156865 .0677026 _cons | .4756935 .0188651 25.22 0.000 .4387037 .5126834 ------------------------------------------------------------------------------
Table 8.4 on page 161.
svy: regress coll offer fatherdec offerxfatherdec (running regress on estimation sample) Survey: Linear regression Number of strata = 1 Number of obs = 3986 Number of PSUs = 3123 Population size = 1302933368 Design df = 3122 F( 3, 3120) = 2.19 Prob > F = 0.0875 R-squared = 0.0020 ------------------------------------------------------------------------------ | Linearized coll | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- offer | .0260081 .0212643 1.22 0.221 -.0156854 .0677016 fatherdec | -.1234757 .0834251 -1.48 0.139 -.2870493 .0400979 offerxfath~c | .1822297 .095841 1.90 0.057 -.0056881 .3701475 _cons | .4756935 .0188649 25.22 0.000 .4387046 .5126825 ------------------------------------------------------------------------------
The “first difference” for cases where the father is not deceased shown in Table 8.2 can be seen here as the coefficient for offer. The term for the interaction (offerxfatherdec) is the “second difference.” The syntax below calculates the “first difference” for cases where the father is deceased.
lincom offer + offerxfatherdec ( 1) offer + offerxfatherdec = 0 ------------------------------------------------------------------------------ coll | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- (1) | .2082378 .0932458 2.23 0.026 .0254085 .3910671 ------------------------------------------------------------------------------
Table 8.4 on page 161 can also be reproduced using the factor variable syntax introduced in Stata 11.
svy: regress coll offer##fatherdec (running regress on estimation sample) Survey: Linear regression Number of strata = 1 Number of obs = 3986 Number of PSUs = 3123 Population size = 1302933368 Design df = 3122 F( 3, 3120) = 2.19 Prob > F = 0.0875 R-squared = 0.0020 ------------------------------------------------------------------------------ | Linearized coll | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- 1.offer | .0260081 .0212643 1.22 0.221 -.0156854 .0677016 1.fatherdec | -.1234757 .0834251 -1.48 0.139 -.2870493 .0400979 | offer#| fatherdec | 1 1 | .1822297 .095841 1.90 0.057 -.0056881 .3701475 | _cons | .4756935 .0188649 25.22 0.000 .4387046 .5126825 ------------------------------------------------------------------------------ lincom 1.offer + 1.offer#1.father ( 1) 1.offer + 1.offer#1.fatherdec = 0 ------------------------------------------------------------------------------ coll | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- (1) | .2082378 .0932458 2.23 0.026 .0254085 .3910671 ------------------------------------------------------------------------------