Table 12.1, page 273.
use https://stats.idre.ucla.edu/stat/stata/examples/pma5/depress, clear tab sex cases | depressed is cesd >=16 | sex | normal depressed | Total -----------+----------------------+---------- male | 101 10 | 111 female | 143 40 | 183 -----------+----------------------+---------- Total | 244 50 | 294
Page 274. The odds ratios at the top of the page.
logit cases i.sex, or Iteration 0: log likelihood = -134.06225 Iteration 1: log likelihood = -129.82684 Iteration 2: log likelihood = -129.69892 Iteration 3: log likelihood = -129.69883 Iteration 4: log likelihood = -129.69883 Logistic regression Number of obs = 294 LR chi2(1) = 8.73 Prob > chi2 = 0.0031 Log likelihood = -129.69883 Pseudo R2 = 0.0325 ------------------------------------------------------------------------------ cases | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- 2.sex | 2.825175 1.06421 2.76 0.006 1.35023 5.911299 _cons | .0990099 .0328231 -6.98 0.000 .0517004 .1896108 ------------------------------------------------------------------------------ logit cases i.sex Iteration 0: log likelihood = -134.06225 Iteration 1: log likelihood = -129.82684 Iteration 2: log likelihood = -129.69892 Iteration 3: log likelihood = -129.69883 Iteration 4: log likelihood = -129.69883 Logistic regression Number of obs = 294 LR chi2(1) = 8.73 Prob > chi2 = 0.0031 Log likelihood = -129.69883 Pseudo R2 = 0.0325 ------------------------------------------------------------------------------ cases | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- 2.sex | 1.03857 .3766882 2.76 0.006 .3002749 1.776866 _cons | -2.312535 .3315132 -6.98 0.000 -2.962289 -1.662782 ------------------------------------------------------------------------------
Page 275. Top of the page.
logit cases age income i.sex Iteration 0: log likelihood = -134.06225 Iteration 1: log likelihood = -124.45941 Iteration 2: log likelihood = -123.7712 Iteration 3: log likelihood = -123.76979 Iteration 4: log likelihood = -123.76979 Logistic regression Number of obs = 294 LR chi2(3) = 20.58 Prob > chi2 = 0.0001 Log likelihood = -123.76979 Pseudo R2 = 0.0768 ------------------------------------------------------------------------------ cases | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | -.0209575 .0090401 -2.32 0.020 -.0386759 -.0032392 income | -.0365635 .0140897 -2.60 0.009 -.0641787 -.0089482 2.sex | .9294487 .3858256 2.41 0.016 .1732444 1.685653 _cons | -.6764559 .5788124 -1.17 0.243 -1.810907 .4579956 ------------------------------------------------------------------------------
Page 275. The coefficients at the bottom of the page.
logit cases age income Iteration 0: log likelihood = -134.06225 Iteration 1: log likelihood = -127.42024 Iteration 2: log likelihood = -127.01794 Iteration 3: log likelihood = -127.01305 Iteration 4: log likelihood = -127.01304 Logit estimates Number of obs = 294 LR chi2(2) = 14.10 Prob > chi2 = 0.0009 Log likelihood = -127.01304 Pseudo R2 = 0.0526 ------------------------------------------------------------------------------ cases | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | -.0201671 .0088966 -2.27 0.023 -.0376041 -.0027301 income | -.0413479 .0140587 -2.94 0.003 -.0689025 -.0137933 _cons | .0279774 .4872007 0.06 0.954 -.9269184 .9828732 ------------------------------------------------------------------------------
Page 276. Coefficients at the top.
logit cases age income Iteration 0: log likelihood = -134.06225 Iteration 1: log likelihood = -127.42024 Iteration 2: log likelihood = -127.01794 Iteration 3: log likelihood = -127.01305 Iteration 4: log likelihood = -127.01304 Logit estimates Number of obs = 294 LR chi2(2) = 14.10 Prob > chi2 = 0.0009 Log likelihood = -127.01304 Pseudo R2 = 0.0526 ------------------------------------------------------------------------------ cases | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | -.0201671 .0088966 -2.27 0.023 -.0376041 -.0027301 income | -.0413479 .0140587 -2.94 0.003 -.0689025 -.0137933 _cons | .0279774 .4872007 0.06 0.954 -.9269184 .9828732 ------------------------------------------------------------------------------
Page 277. These numbers are obtained from the output from page 276.
Page 278. Table at the top of the page.
gen duminc = income < 10 gen dumemp = employ == 2 | employ == 3 replace dumemp = . if employ == 7 logit cases duminc dumemp Iteration 0: log likelihood = -131.73021 Iteration 1: log likelihood = -127.6761 Iteration 2: log likelihood = -127.42821 Iteration 3: log likelihood = -127.42796 Iteration 4: log likelihood = -127.42796 Logistic regression Number of obs = 290 LR chi2(2) = 8.60 Prob > chi2 = 0.0135 Log likelihood = -127.42796 Pseudo R2 = 0.0327 ------------------------------------------------------------------------------ cases | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- duminc | .2722943 .3376896 0.81 0.420 -.3895653 .9341538 dumemp | 1.028483 .3487121 2.95 0.003 .3450196 1.711946 _cons | -1.934537 .2259083 -8.56 0.000 -2.377309 -1.491765 ------------------------------------------------------------------------------
Page 279. Table in the middle of the page.
logit cases duminc##dumemp Iteration 0: log likelihood = -131.73021 Iteration 1: log likelihood = -125.18993 Iteration 2: log likelihood = -123.52872 Iteration 3: log likelihood = -123.31292 Iteration 4: log likelihood = -123.31287 Iteration 5: log likelihood = -123.31287 Logistic regression Number of obs = 290 LR chi2(3) = 16.83 Prob > chi2 = 0.0008 Log likelihood = -123.31287 Pseudo R2 = 0.0639 ------------------------------------------------------------------------------- cases | Coef. Std. Err. z P>|z| [95% Conf. Interval] --------------+---------------------------------------------------------------- 1.duminc | -.3756121 .4349381 -0.86 0.388 -1.228075 .4768508 1.dumemp | .317535 .4520206 0.70 0.482 -.5684091 1.203479 | duminc#dumemp | 1 1 | 2.198143 .7888295 2.79 0.005 .6520659 3.744221 | _cons | -1.734601 .2214037 -7.83 0.000 -2.168544 -1.300658 -------------------------------------------------------------------------------
Page 280
di 2.198143/.7888294 2.7865886 di (2.7865886)^2 7.765076 * for likelihood ratio chi square logit cases duminc dumemp Iteration 0: log likelihood = -131.73021 Iteration 1: log likelihood = -127.6761 Iteration 2: log likelihood = -127.42821 Iteration 3: log likelihood = -127.42796 Logit estimates Number of obs = 290 LR chi2(2) = 8.60 Prob > chi2 = 0.0135 Log likelihood = -127.42796 Pseudo R2 = 0.0327 ------------------------------------------------------------------------------ cases | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- duminc | .2722943 .3376895 0.81 0.420 -.3895651 .9341536 dumemp | 1.028483 .3487117 2.95 0.003 .3450204 1.711945 _cons | -1.934537 .2259083 -8.56 0.000 -2.377309 -1.491765 ------------------------------------------------------------------------------ di 16.83-8.6 8.23
Page 287. Middle of the page.
egen cage = cut(age), at(0, 28, 43, 59, 90) logit cases i.cage income sex Iteration 0: log likelihood = -134.06225 Iteration 1: log likelihood = -124.32078 Iteration 2: log likelihood = -123.5791 Iteration 3: log likelihood = -123.57661 Iteration 4: log likelihood = -123.57661 Logistic regression Number of obs = 294 LR chi2(5) = 20.97 Prob > chi2 = 0.0008 Log likelihood = -123.57661 Pseudo R2 = 0.0782 ------------------------------------------------------------------------------ cases | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- cage | 28 | .0747259 .4318019 0.17 0.863 -.7715902 .9210421 43 | -.5706276 .4743977 -1.20 0.229 -1.50043 .3591748 59 | -.8853103 .456306 -1.94 0.052 -1.779654 .0090329 | income | -.0379521 .014852 -2.56 0.011 -.0670616 -.0088426 sex | .9238035 .3864416 2.39 0.017 .1663918 1.681215 _cons | -2.159495 .7830425 -2.76 0.006 -3.69423 -.62476 ------------------------------------------------------------------------------
Figure 12.2, page 289.
gen female = (sex == 2) logit cases i.cage income female matrix b = e(b) gen b0 = 0 in 1 svmat b list b0 - b6 in 1 * The point of the next two commands is to drop all of the * unnecessary variables and observations. You may need to * modify the variable names on the drop command to match * your variables. drop sex - b1 b6 b7 keep in 1 reshape long b, i(id) list gen newage = 22.5 replace newage = 35 if _j == 2 replace newage = 50.5 if _j == 3 replace newage = 74 if _j == 4 sort newage * You need to calculate the midpoint of each interval based on the * table on page 287. The minimum of age is 18. graph twoway scatter b newage in 1/4, msymbol(O) connect(L) ylabel(-1(.5)0, nogrid) /// ytitle(Coefficient b) xlabel(20(10)80) xtitle(Age)
Figure 12.3, page 291.
use https://stats.idre.ucla.edu/stat/stata/examples/pma5/depress, clear logit cases sex income age predict p predict db, db graph twoway scatter db p
Table 12.2, page 292.
logit cases age income sex Iteration 0: log likelihood = -134.06225 Iteration 1: log likelihood = -124.45941 Iteration 2: log likelihood = -123.78013 Iteration 3: log likelihood = -123.76979 Iteration 4: log likelihood = -123.76979 Logit estimates Number of obs = 294 LR chi2(3) = 20.58 Prob > chi2 = 0.0001 Log likelihood = -123.76979 Pseudo R2 = 0.0768 ------------------------------------------------------------------------------ cases | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | -.0209575 .0090401 -2.32 0.020 -.0386758 -.0032392 income | -.0365635 .0140897 -2.60 0.009 -.0641787 -.0089482 sex | .9294487 .3858256 2.41 0.016 .1732444 1.685653 _cons | -1.605905 .8465372 -1.90 0.058 -3.265087 .0532779 ------------------------------------------------------------------------------ list db in -4/l +----------+ | db | |----------| 291. | .0004829 | 292. | .0001442 | 293. | .0006498 | 294. | .0111896 | +----------+ gen x = 0 replace x = 3 if db > .1637310 (5 real changes made) replace x = 2 if db > .1789604 (4 real changes made) replace x = 1 if db > .2084397 (3 real changes made) logit cases age income sex if x ~= 1 Iteration 0: log likelihood = -131.91495 Iteration 1: log likelihood = -121.29438 Iteration 2: log likelihood = -120.39934 Iteration 3: log likelihood = -120.3796 Iteration 4: log likelihood = -120.37958 Logit estimates Number of obs = 291 LR chi2(3) = 23.07 Prob > chi2 = 0.0000 Log likelihood = -120.37958 Pseudo R2 = 0.0874 ------------------------------------------------------------------------------ cases | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | -.0215037 .0091147 -2.36 0.018 -.0393683 -.0036391 income | -.0416866 .0149928 -2.78 0.005 -.071072 -.0123013 sex | 1.022995 .4007114 2.55 0.011 .2376152 1.808375 _cons | -1.692541 .8721181 -1.94 0.052 -3.401861 .016779 ------------------------------------------------------------------------------ logit cases age income sex if x ~= 2 Iteration 0: log likelihood = -132.28233 Iteration 1: log likelihood = -121.82603 Iteration 2: log likelihood = -121.03222 Iteration 3: log likelihood = -121.01885 Iteration 4: log likelihood = -121.01885 Logit estimates Number of obs = 293 LR chi2(3) = 22.53 Prob > chi2 = 0.0001 Log likelihood = -121.01885 Pseudo R2 = 0.0851 ------------------------------------------------------------------------------ cases | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | -.023414 .0092536 -2.53 0.011 -.0415507 -.0052774 income | -.0357778 .0141515 -2.53 0.011 -.0635142 -.0080415 sex | 1.050539 .4007857 2.62 0.009 .2650138 1.836065 _cons | -1.756961 .871175 -2.02 0.044 -3.464433 -.0494895 ------------------------------------------------------------------------------ logit cases age income sex if x ~= 3 Iteration 0: log likelihood = -132.28233 Iteration 1: log likelihood = -121.54471 Iteration 2: log likelihood = -120.67498 Iteration 3: log likelihood = -120.65779 Iteration 4: log likelihood = -120.65778 Logit estimates Number of obs = 293 LR chi2(3) = 23.25 Prob > chi2 = 0.0000 Log likelihood = -120.65778 Pseudo R2 = 0.0879 ------------------------------------------------------------------------------ cases | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | -.0228888 .0092002 -2.49 0.013 -.0409209 -.0048567 income | -.0389067 .0145405 -2.68 0.007 -.0674056 -.0104078 sex | 1.04192 .4008515 2.60 0.009 .2562651 1.827574 _cons | -1.71381 .8720871 -1.97 0.049 -3.423069 -.0045506 ------------------------------------------------------------------------------ logit cases age income sex if x == 0 Iteration 0: log likelihood = -128.31745 Iteration 1: log likelihood = -115.44875 Iteration 2: log likelihood = -114.1166 Iteration 3: log likelihood = -114.074 Iteration 4: log likelihood = -114.07392 Logit estimates Number of obs = 289 LR chi2(3) = 28.49 Prob > chi2 = 0.0000 Log likelihood = -114.07392 Pseudo R2 = 0.1110 ------------------------------------------------------------------------------ cases | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | -.0262663 .0095311 -2.76 0.006 -.0449469 -.0075856 income | -.0439743 .015642 -2.81 0.005 -.074632 -.0133166 sex | 1.30267 .4406845 2.96 0.003 .4389443 2.166396 _cons | -2.018118 .9403468 -2.15 0.032 -3.861163 -.1750718 ------------------------------------------------------------------------------
Table 12.3, page 293.
list age income sex cases p if id == 288 | id==99 | id==143 | id == 232 | id == 68 +---------------------------------------+ | age income sex cases p | |---------------------------------------| 68. | 40 45 1 1 .0406946 | 99. | 72 11 1 1 .069941 | 143. | 40 45 1 0 .0406946 | 232. | 40 45 1 0 .0406946 | 288. | 61 28 1 1 .0484001 | +---------------------------------------+
Figure 12.4, page 294.
logit cases sex income age Iteration 0: log likelihood = -134.06225 Iteration 1: log likelihood = -124.45941 Iteration 2: log likelihood = -123.78013 Iteration 3: log likelihood = -123.76979 Iteration 4: log likelihood = -123.76979 Logit estimates Number of obs = 294 LR chi2(3) = 20.58 Prob > chi2 = 0.0001 Log likelihood = -123.76979 Pseudo R2 = 0.0768 ------------------------------------------------------------------------------ cases | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- sex | .9294487 .3858256 2.41 0.016 .1732444 1.685653 income | -.0365635 .0140897 -2.60 0.009 -.0641787 -.0089482 age | -.0209575 .0090401 -2.32 0.020 -.0386758 -.0032392 _cons | -1.605905 .8465372 -1.90 0.058 -3.265087 .0532779 ------------------------------------------------------------------------------ predict dx2, dx2 graph twoway scatter dx2 p [w = db], msymbol(Oh) ylabel(0(5)25, nogrid) xlabel(0(.1).5)
Figure 12.5, page 296.
lsens
Figure 12.6, page 297.
lroc