Page 120. Regression from chapter 6.
use https://stats.idre.ucla.edu/stat/stata/examples/pma5/lung, clear generate ffev1a = ffev1/100 regress ffev1a fheight Source | SS df MS Number of obs = 150 -------------+------------------------------ F( 1, 148) = 50.50 Model | 16.0531702 1 16.0531702 Prob > F = 0.0000 Residual | 47.0451258 148 .317872472 R-squared = 0.2544 -------------+------------------------------ Adj R-squared = 0.2494 Total | 63.098296 149 .423478497 Root MSE = .5638 ------------------------------------------------------------------------------ ffev1a | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- fheight | .1181052 .0166194 7.11 0.000 .0852633 .1509472 _cons | -4.086702 1.151979 -3.55 0.001 -6.363155 -1.81025 ------------------------------------------------------------------------------
Page 122. Descriptive statistics at the bottom of the page.
summarize fage fheight ffev1a Variable | Obs Mean Std. Dev. Min Max -------------+----------------------------------------------------- fage | 150 40.13333 6.889995 26 59 fheight | 150 69.26 2.779189 61 76 ffev1a | 150 4.093267 .6507523 2.5 5.85
Page 127. Covariance and correlation matrices.
Covariance:
correlate fage fheight fweight ffev1a, covariance (obs=150) | fage fheight fweight ffev1a -------------+------------------------------------ fage | 47.472 fheight | -1.07517 7.72389 fweight | -3.64922 34.6954 573.798 ffev1a | -1.38762 .912232 2.06716 .423478
Correlation (page 127):
correlate fage fheight fweight ffev1a (obs=150) | fage fheight fweight ffev1a -------------+------------------------------------ fage | 1.0000 fheight | -0.0561 1.0000 fweight | -0.0221 0.5212 1.0000 ffev1a | -0.3095 0.5044 0.1326 1.0000
Table 7.2, page 132.
regress ffev1a fheight fage Source | SS df MS Number of obs = 150 -------------+------------------------------ F( 2, 147) = 36.81 Model | 21.056968 2 10.528484 Prob > F = 0.0000 Residual | 42.041328 147 .285995429 R-squared = 0.3337 -------------+------------------------------ Adj R-squared = 0.3247 Total | 63.098296 149 .423478497 Root MSE = .53479 ------------------------------------------------------------------------------ ffev1a | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- fheight | .114397 .015789 7.25 0.000 .0831943 .1455997 fage | -.0266393 .0063687 -4.18 0.000 -.0392254 -.0140532 _cons | -2.760746 1.137746 -2.43 0.016 -5.009197 -.5122958 ------------------------------------------------------------------------------
Page 134. The t-test at the top of the page.
NOTE: This is given in the output above.
Table 7.5, page 145.
NOTE: We need to reshape the data from wide to long to get the first panel of the table. We use the Stata command reshape to do this. We use the @ symbol before the variables that we wish to reshape as a “wild card” to collect all of the age variables, for example, regardless of the prefix (in this case, “f” and “m”). Before we reshape the data, however, we need to drop the variables for the children so that the will not be picked up by the “wild card”. We use the string option because the “j” variable, gender, is a string variable.
drop oc* mc* yc* reshape long @age @height @fev1, i(id) j(momdad) string generate gender = 2 if momdad == "m" replace gender = 1 if momdad == "f" label define gend 1 "male" 2 "female" label values gender gend generate fev1a = fev1/100 tabstat age height fev1a, statistics(mean sd) stats | age height fev1a ---------+------------------------------ mean | 38.84667 66.67667 3.5332 sd | 6.912484 3.685657 .8025855 ---------------------------------------- regress fev1a age height Source | SS df MS Number of obs = 300 -------------+------------------------------ F( 2, 297) = 197.57 Model | 109.953774 2 54.976887 Prob > F = 0.0000 Residual | 82.6451491 297 .278266495 R-squared = 0.5709 -------------+------------------------------ Adj R-squared = 0.5680 Total | 192.598923 299 .644143556 Root MSE = .52751 ------------------------------------------------------------------------------ fev1a | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- age | -.0185978 .0044429 -4.19 0.000 -.0273413 -.0098542 height | .164865 .0083327 19.79 0.000 .1484664 .1812635 _cons | -6.736985 .5632885 -11.96 0.000 -7.845528 -5.628443 ------------------------------------------------------------------------------
To obtain the second and third panels of the table, we need sort the data by gender and then use the by prefix to do the descriptive statistics and regressions for each gender.
sort gender by gender: tabstat age height fev1a, statistics(mean sd) ------------------------------------------------------------------------------------------------ -> gender = male stats | age height fev1a ---------+------------------------------ mean | 40.13333 69.26 4.093267 sd | 6.889995 2.779189 .6507523 ---------------------------------------- ------------------------------------------------------------------------------------------------ -> gender = female stats | age height fev1a ---------+------------------------------ mean | 37.56 64.09333 2.973133 sd | 6.714184 2.469537 .4874136 ---------------------------------------- by gender: regress fev1a age height ------------------------------------------------------------------------------------------------ -> gender = male Source | SS df MS Number of obs = 150 -------------+------------------------------ F( 2, 147) = 36.81 Model | 21.056968 2 10.528484 Prob > F = 0.0000 Residual | 42.041328 147 .285995429 R-squared = 0.3337 -------------+------------------------------ Adj R-squared = 0.3247 Total | 63.098296 149 .423478497 Root MSE = .53479 ------------------------------------------------------------------------------ fev1a | Coef. Std. Err. t P>|t| Beta -------------+---------------------------------------------------------------- age | -.0266393 .0063687 -4.18 0.000 -.2820504 height | .114397 .015789 7.25 0.000 .4885592 _cons | -2.760746 1.137746 -2.43 0.016 . ------------------------------------------------------------------------------ ------------------------------------------------------------------------------------------------ -> gender = female Source | SS df MS Number of obs = 150 -------------+------------------------------ F( 2, 147) = 30.24 Model | 10.3185252 2 5.15926259 Prob > F = 0.0000 Residual | 25.0797019 147 .170610217 R-squared = 0.2915 -------------+------------------------------ Adj R-squared = 0.2819 Total | 35.3982271 149 .237571994 Root MSE = .41305 ------------------------------------------------------------------------------ fev1a | Coef. Std. Err. t P>|t| Beta -------------+---------------------------------------------------------------- age | -.0199755 .0050405 -3.96 0.000 -.2751644 height | .0925926 .0137042 6.76 0.000 .4691313 _cons | -2.21116 .896067 -2.47 0.015 . ------------------------------------------------------------------------------
Page 147. Middle of the page.
NOTE: The coefficient and standard error for the height variable from the analysis above (.093) and the one below (.114) are used in the calculation of the Z test.
regress fev1a age i.gender##c.height Source | SS df MS Number of obs = 300 -------------+------------------------------ F( 4, 295) = 137.39 Model | 125.325155 4 31.3312887 Prob > F = 0.0000 Residual | 67.2737685 295 .228046673 R-squared = 0.6507 -------------+------------------------------ Adj R-squared = 0.6460 Total | 192.598923 299 .644143556 Root MSE = .47754 --------------------------------------------------------------------------------- fev1a | Coef. Std. Err. t P>|t| [95% Conf. Interval] ----------------+---------------------------------------------------------------- age | -.0233887 .0040701 -5.75 0.000 -.0313988 -.0153786 2.gender | .8296771 1.410069 0.59 0.557 -1.945392 3.604746 height | .1148495 .0140881 8.15 0.000 .0871236 .1425754 | gender#c.height | 2 | -.0221023 .0212056 -1.04 0.298 -.0638357 .0196312 | _cons | -2.922545 .9965403 -2.93 0.004 -4.883774 -.9613152 ---------------------------------------------------------------------------------
Page 148. Middle of the page.
regress fev1a i.gender##c.height i.gender##c.age Source | SS df MS Number of obs = 300 -------------+------------------------------ F( 5, 294) = 109.92 Model | 125.477893 5 25.0955786 Prob > F = 0.0000 Residual | 67.1210299 294 .228302823 R-squared = 0.6515 -------------+------------------------------ Adj R-squared = 0.6456 Total | 192.598923 299 .644143556 Root MSE = .47781 --------------------------------------------------------------------------------- fev1a | Coef. Std. Err. t P>|t| [95% Conf. Interval] ----------------+---------------------------------------------------------------- 2.gender | .5495863 1.451823 0.38 0.705 -2.307697 3.40687 height | .114397 .0141069 8.11 0.000 .0866338 .1421602 | gender#c.height | 2 | -.0218044 .0212206 -1.03 0.305 -.063568 .0199592 | age | -.0266393 .0056902 -4.68 0.000 -.0378381 -.0154406 | gender#c.age | 2 | .0066639 .0081472 0.82 0.414 -.0093704 .0226981 | _cons | -2.760746 1.016532 -2.72 0.007 -4.761349 -.7601438 --------------------------------------------------------------------------------- test 2.gender 2.gender#c.height 2.gender#c.age ( 1) 2.gender = 0 ( 2) 2.gender#c.height = 0 ( 3) 2.gender#c.age = 0 F( 3, 294) = 22.67 Prob > F = 0.0000