Figure 7.1, page 218.
use https://stats.idre.ucla.edu/stat/stata/examples/rwg/toxic, clear regress close lived Source | SS df MS Number of obs = 153 ---------+------------------------------ F( 1, 151) = 13.65 Model | 3.11094265 1 3.11094265 Prob > F = 0.0003 Residual | 34.4184691 151 .227936882 R-squared = 0.0829 ---------+------------------------------ Adj R-squared = 0.0768 Total | 37.5294118 152 .246904025 Root MSE = .47743 ------------------------------------------------------------------------------ close | Coef. Std. Err. t P>|t| [95% Conf. Interval] ---------+-------------------------------------------------------------------- lived | -.0084379 .002284 -3.694 0.000 -.0129506 -.0039252 _cons | .593954 .0585363 10.147 0.000 .4782981 .7096099 ------------------------------------------------------------------------------ graph twoway (scatter close lived if close == 1, connect(l)) /// (scatter close lived if close == 0, connect(l)) /// (lfit close lived), xlabel(0(10)80) ylabel(0(.2)1)
Figure 7.2, page 219.
use https://stats.idre.ucla.edu/stat/stata/examples/rwg/toxic, clear graph hbox lived, over(close)
Figure 7.4, page 222.
use https://stats.idre.ucla.edu/stat/stata/examples/rwg/toxic, clear logit close lived Iteration 0: log likelihood = -104.60578 Iteration 1: log likelihood = -97.80942 Iteration 2: log likelihood = -97.634236 Iteration 3: log likelihood = -97.633571 Logit estimates Number of obs = 153 LR chi2(1) = 13.94 Prob > chi2 = 0.0002 Log likelihood = -97.633571 Pseudo R2 = 0.0667 ------------------------------------------------------------------------------ close | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- lived | -.0409876 .0121398 -3.376 0.001 -.0647811 -.0171941 _cons | .4599786 .2625643 1.752 0.080 -.054638 .9745953 ------------------------------------------------------------------------------ predict yhat1 graph twoway (scatter close lived if close == 1, connect(l)) /// (scatter close lived if close == 0, connect(l)) /// (line yhat1 lived, sort) (lfit close lived), xlabel(0(10)80) ylabel(0(.2)1)
Table 224, page 224.
use https://stats.idre.ucla.edu/stat/stata/examples/rwg/toxic, clear logit close lived Iteration 0: log likelihood = -104.60578 Iteration 1: log likelihood = -97.80942 Iteration 2: log likelihood = -97.634236 Iteration 3: log likelihood = -97.633571 Logit estimates Number of obs = 153 LR chi2(1) = 13.94 Prob > chi2 = 0.0002 Log likelihood = -97.633571 Pseudo R2 = 0.0667 ------------------------------------------------------------------------------ close | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- lived | -.0409876 .0121398 -3.376 0.001 -.0647811 -.0171941 _cons | .4599786 .2625643 1.752 0.080 -.054638 .9745953 ------------------------------------------------------------------------------
Table 7.2, page 226.
use https://stats.idre.ucla.edu/stat/stata/examples/rwg/toxic, clear logit close lived educ contam hsc Iteration 0: log likelihood = -104.60578 Iteration 1: log likelihood = -76.104878 Iteration 2: log likelihood = -74.725772 Iteration 3: log likelihood = -74.690849 Iteration 4: log likelihood = -74.690816 Logit estimates Number of obs = 153 LR chi2(4) = 59.83 Prob > chi2 = 0.0000 Log likelihood = -74.690816 Pseudo R2 = 0.2860 ------------------------------------------------------------------------------ close | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- lived | -.0464826 .0149263 -3.114 0.002 -.0757376 -.0172276 educ | -.1659221 .0899316 -1.845 0.065 -.3421849 .0103407 contam | 1.208137 .4653958 2.596 0.009 .2959783 2.120296 hsc | 2.17289 .4641192 4.682 0.000 1.263233 3.082547 _cons | 1.731439 1.301999 1.330 0.184 -.8204311 4.28331 ------------------------------------------------------------------------------
Table 7.3, page 227.
use https://stats.idre.ucla.edu/stat/stata/examples/rwg/toxic, clear logit close lived educ contam hsc female kids nodad Iteration 0: log likelihood = -104.60578 Iteration 1: log likelihood = -73.307756 Iteration 2: log likelihood = -70.718684 Iteration 3: log likelihood = -70.526461 Iteration 4: log likelihood = -70.52469 Iteration 5: log likelihood = -70.524689 Logit estimates Number of obs = 153 LR chi2(7) = 68.16 Prob > chi2 = 0.0000 Log likelihood = -70.524689 Pseudo R2 = 0.3258 ------------------------------------------------------------------------------ close | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- lived | -.0466422 .0169751 -2.748 0.006 -.0799129 -.0133716 educ | -.2060233 .093197 -2.211 0.027 -.3886861 -.0233605 contam | 1.282082 .4813682 2.663 0.008 .3386177 2.225546 hsc | 2.418002 .5096638 4.744 0.000 1.419079 3.416924 female | -.0515618 .5571215 -0.093 0.926 -1.1435 1.040376 kids | -.6706227 .5656146 -1.186 0.236 -1.779207 .4379616 nodad | -2.225988 .9991178 -2.228 0.026 -4.184223 -.2677527 _cons | 2.893725 1.602985 1.805 0.071 -.2480675 6.035517 ------------------------------------------------------------------------------
Table 7.4, page 228.
use https://stats.idre.ucla.edu/stat/stata/examples/rwg/toxic, clear logit close lived educ contam hsc nodad Iteration 0: log likelihood = -104.60578 Iteration 1: log likelihood = -73.813367 Iteration 2: log likelihood = -71.47445 Iteration 3: log likelihood = -71.327206 Iteration 4: log likelihood = -71.326227 Iteration 5: log likelihood = -71.326227 Logit estimates Number of obs = 153 LR chi2(5) = 66.56 Prob > chi2 = 0.0000 Log likelihood = -71.326227 Pseudo R2 = 0.3181 ------------------------------------------------------------------------------ close | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- lived | -.0396488 .0154812 -2.561 0.010 -.0699914 -.0093062 educ | -.1966667 .0926128 -2.124 0.034 -.3781846 -.0151489 contam | 1.298551 .4766294 2.724 0.006 .3643749 2.232728 hsc | 2.27855 .4903703 4.647 0.000 1.317441 3.239658 nodad | -1.730948 .7252746 -2.387 0.017 -3.15246 -.309436 _cons | 2.182273 1.330141 1.641 0.101 -.4247561 4.789301 ------------------------------------------------------------------------------
Figure 7.5, page 232.
Note that the equations for these curves are listed and explained on page 231.
use https://stats.idre.ucla.edu/stat/stata/examples/rwg/toxic, clear logit close lived educ contam hsc nodad Iteration 0: log likelihood = -104.60578 Iteration 1: log likelihood = -73.813367 Iteration 2: log likelihood = -71.47445 Iteration 3: log likelihood = -71.327206 Iteration 4: log likelihood = -71.326227 Iteration 5: log likelihood = -71.326227 Logit estimates Number of obs = 153 LR chi2(5) = 66.56 Prob > chi2 = 0.0000 Log likelihood = -71.326227 Pseudo R2 = 0.3181 ------------------------------------------------------------------------------ close | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- lived | -.0396488 .0154812 -2.561 0.010 -.0699914 -.0093062 educ | -.1966667 .0926128 -2.124 0.034 -.3781846 -.0151489 contam | 1.298551 .4766294 2.724 0.006 .3643749 2.232728 hsc | 2.27855 .4903703 4.647 0.000 1.317441 3.239658 nodad | -1.730948 .7252746 -2.387 0.017 -3.15246 -.309436 _cons | 2.182273 1.330141 1.641 0.101 -.4247561 4.789301 ------------------------------------------------------------------------------
To obtain the predicted probabilities for a subject’s profile, we are going to use the postgr3 command and use the x( ) option to define the profile that we are interested. You can download postgr3 from within Stata by typing search postgr3 (see How can I use the search command to search for programs and get additional help? for more information about using search).
postgr3 lived, gen(avg) nodraw postgr3 lived, gen(bottom) x(contam=0 hsc=0 nodad=1) nodraw postgr3 lived, gen(top) x(contam=1 hsc=1 nodad=0) nodraw graph twoway (line avg lived, sort) (line bottom lived, sort) (line top lived, sort), /// xlabel(0(10)80)
Figure 7.6, page 232.
use https://stats.idre.ucla.edu/stat/stata/examples/rwg/toxic, clear logit close lived educ contam hsc nodad Iteration 0: log likelihood = -104.60578 Iteration 1: log likelihood = -73.813367 Iteration 2: log likelihood = -71.47445 Iteration 3: log likelihood = -71.327206 Iteration 4: log likelihood = -71.326227 Iteration 5: log likelihood = -71.326227 Logit estimates Number of obs = 153 LR chi2(5) = 66.56 Prob > chi2 = 0.0000 Log likelihood = -71.326227 Pseudo R2 = 0.3181 ------------------------------------------------------------------------------ close | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- lived | -.0396488 .0154812 -2.561 0.010 -.0699914 -.0093062 educ | -.1966667 .0926128 -2.124 0.034 -.3781846 -.0151489 contam | 1.298551 .4766294 2.724 0.006 .3643749 2.232728 hsc | 2.27855 .4903703 4.647 0.000 1.317441 3.239658 nodad | -1.730948 .7252746 -2.387 0.017 -3.15246 -.309436 _cons | 2.182273 1.330141 1.641 0.101 -.4247561 4.789301 ------------------------------------------------------------------------------ summ lived educ contam hsc nodad Variable | Obs Mean Std. Dev. Min Max ---------+----------------------------------------------------- lived | 153 19.26797 16.95466 1 81 educ | 153 12.95425 2.431536 6 20 contam | 153 .2810458 .450986 0 1 hsc | 153 .3071895 .4628437 0 1 nodad | 153 .1699346 .3768088 0 1
postgr3 contam, gen(avg1) nodraw postgr3 contam, gen(top1) x(lived=min educ=min hsc=1 nodad=0) nodraw postgr3 contam, gen(bottom1) x(lived=max educ=max hsc=0 nodad=1) nodraw graph twoway (line avg1 contam, sort) (line bottom1 contam, sort) (line top1 contam, sort), /// xlabel(0 1)
Table 7.5, page 234.
NOTE: Hamilton gives the data set at the top of the page. You need to input it before you can run the logit.
clear input less mother cnt 0 0 202 0 1 79 1 0 44 1 1 0 end logit less mother [fw=cnt] Note: mother~=0 predicts failure perfectly mother dropped and 1 obs not used Iteration 0: log likelihood = -115.53714 Logit estimates Number of obs = 246 LR chi2(0) = 0.00 Prob > chi2 = . Log likelihood = -115.53714 Pseudo R2 = 0.0000 ------------------------------------------------------------------------------ less | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- _cons | -1.524078 .1663664 -9.161 0.000 -1.85015 -1.198006 ------------------------------------------------------------------------------
Figure 7.7, page 239.
use https://stats.idre.ucla.edu/stat/stata/examples/rwg/toxic, clear logistic close lived educ contam hsc nodad Logit estimates Number of obs = 153 LR chi2(5) = 66.56 Prob > chi2 = 0.0000 Log likelihood = -71.326227 Pseudo R2 = 0.3181 ------------------------------------------------------------------------------ close | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- lived | .9611269 .0148794 -2.561 0.010 .9324019 .9907369 educ | .8214643 .0760781 -2.124 0.034 .6851041 .9849652 contam | 3.663985 1.746363 2.724 0.006 1.439614 9.325267 hsc | 9.76251 4.787244 4.647 0.000 3.733856 25.52498 nodad | .1771164 .128458 -2.387 0.017 .0427468 .7338607 ------------------------------------------------------------------------------ predict x, dx2 predict lhat graph twoway (scatter x lhat), xlabel(0(.2)1) ylabel(0(5)30)
Figure 7.8, page 240.
predict z, ddeviance graph twoway scatter z lhat, xlabel(0(.2)1) ylabel(0(1)7)
graph twoway scatter b lhat, xlabel(0(.2)1) ylabel(0(.1).7)
Table 7.8, page 241.
use https://stats.idre.ucla.edu/stat/stata/examples/rwg/toxic, clear
logit model estimated with full sample (n=153)
logit close lived educ contam hsc nodad Iteration 0: log likelihood = -104.60578 Iteration 1: log likelihood = -73.813367 Iteration 2: log likelihood = -71.47445 Iteration 3: log likelihood = -71.327206 Iteration 4: log likelihood = -71.326227 Iteration 5: log likelihood = -71.326227 Logit estimates Number of obs = 153 LR chi2(5) = 66.56 Prob > chi2 = 0.0000 Log likelihood = -71.326227 Pseudo R2 = 0.3181 ------------------------------------------------------------------------------ close | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- lived | -.0396488 .0154812 -2.561 0.010 -.0699914 -.0093062 educ | -.1966667 .0926128 -2.124 0.034 -.3781846 -.0151489 contam | 1.298551 .4766294 2.724 0.006 .3643749 2.232728 hsc | 2.27855 .4903703 4.647 0.000 1.317441 3.239658 nodad | -1.730948 .7252746 -2.387 0.017 -3.15246 -.309436 _cons | 2.182273 1.330141 1.641 0.101 -.4247561 4.789301 ------------------------------------------------------------------------------
with X pattern 131 deleted (n=152)
use https://stats.idre.ucla.edu/stat/stata/examples/rwg/toxic, clear logistic close lived educ contam hsc nodad Logit estimates Number of obs = 153 LR chi2(5) = 66.56 Prob > chi2 = 0.0000 Log likelihood = -71.326227 Pseudo R2 = 0.3181 ------------------------------------------------------------------------------ close | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- lived | .9611269 .0148794 -2.561 0.010 .9324019 .9907369 educ | .8214643 .0760781 -2.124 0.034 .6851041 .9849652 contam | 3.663985 1.746363 2.724 0.006 1.439614 9.325267 hsc | 9.76251 4.787244 4.647 0.000 3.733856 25.52498 nodad | .1771164 .128458 -2.387 0.017 .0427468 .7338607 ------------------------------------------------------------------------------ predict b, dbeta predict y, number drop if y==131 (1 observation deleted) logit close lived educ contam hsc nodad Iteration 0: log likelihood = -103.76066 Iteration 1: log likelihood = -71.127431 Iteration 2: log likelihood = -68.285763 Iteration 3: log likelihood = -68.06416 Iteration 4: log likelihood = -68.061885 Iteration 5: log likelihood = -68.061885 Logit estimates Number of obs = 152 LR chi2(5) = 71.40 Prob > chi2 = 0.0000 Log likelihood = -68.061885 Pseudo R2 = 0.3440 ------------------------------------------------------------------------------ close | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- lived | -.0524225 .0168844 -3.105 0.002 -.0855153 -.0193297 educ | -.2140323 .0951634 -2.249 0.025 -.4005492 -.0275155 contam | 1.381912 .4896501 2.822 0.005 .4222155 2.341609 hsc | 2.346783 .5030237 4.665 0.000 1.360875 3.332691 nodad | -1.658292 .7484702 -2.216 0.027 -3.125267 -.1913172 _cons | 2.52996 1.370969 1.845 0.065 -.1570907 5.217011 ------------------------------------------------------------------------------
with X pattern 3 deleted (n=152)
use https://stats.idre.ucla.edu/stat/stata/examples/rwg/toxic, clear logistic close lived educ contam hsc nodad Logit estimates Number of obs = 153 LR chi2(5) = 66.56 Prob > chi2 = 0.0000 Log likelihood = -71.326227 Pseudo R2 = 0.3181 ------------------------------------------------------------------------------ close | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- lived | .9611269 .0148794 -2.561 0.010 .9324019 .9907369 educ | .8214643 .0760781 -2.124 0.034 .6851041 .9849652 contam | 3.663985 1.746363 2.724 0.006 1.439614 9.325267 hsc | 9.76251 4.787244 4.647 0.000 3.733856 25.52498 nodad | .1771164 .128458 -2.387 0.017 .0427468 .7338607 ------------------------------------------------------------------------------ predict b, dbeta predict y, number drop if y==3 (1 observation deleted) logit close lived educ contam hsc nodad Iteration 0: log likelihood = -104.03876 Iteration 1: log likelihood = -70.928977 Iteration 2: log likelihood = -67.960963 Iteration 3: log likelihood = -67.715507 Iteration 4: log likelihood = -67.712659 Iteration 5: log likelihood = -67.712659 Logit estimates Number of obs = 152 LR chi2(5) = 72.65 Prob > chi2 = 0.0000 Log likelihood = -67.712659 Pseudo R2 = 0.3492 ------------------------------------------------------------------------------ close | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- lived | -.0446571 .0161192 -2.770 0.006 -.0762503 -.013064 educ | -.2236421 .0957586 -2.335 0.020 -.4113255 -.0359586 contam | 1.48958 .4975889 2.994 0.003 .5143239 2.464836 hsc | 2.49197 .5238655 4.757 0.000 1.465213 3.518728 nodad | -1.888628 .7622651 -2.478 0.013 -3.38264 -.3946154 _cons | 2.575416 1.370319 1.879 0.060 -.1103597 5.261191 ------------------------------------------------------------------------------
with X pattern 115 deleted (n=152)
use https://stats.idre.ucla.edu/stat/stata/examples/rwg/toxic, clear logistic close lived educ contam hsc nodad Logit estimates Number of obs = 153 LR chi2(5) = 66.56 Prob > chi2 = 0.0000 Log likelihood = -71.326227 Pseudo R2 = 0.3181 ------------------------------------------------------------------------------ close | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- lived | .9611269 .0148794 -2.561 0.010 .9324019 .9907369 educ | .8214643 .0760781 -2.124 0.034 .6851041 .9849652 contam | 3.663985 1.746363 2.724 0.006 1.439614 9.325267 hsc | 9.76251 4.787244 4.647 0.000 3.733856 25.52498 nodad | .1771164 .128458 -2.387 0.017 .0427468 .7338607 ------------------------------------------------------------------------------ predict b, dbeta predict y, number drop if y==115 (1 observation deleted) logit close lived educ contam hsc nodad Iteration 0: log likelihood = -104.03876 Iteration 1: log likelihood = -72.041161 Iteration 2: log likelihood = -69.387543 Iteration 3: log likelihood = -69.190424 Iteration 4: log likelihood = -69.188607 Iteration 5: log likelihood = -69.188607 Logit estimates Number of obs = 152 LR chi2(5) = 69.70 Prob > chi2 = 0.0000 Log likelihood = -69.188607 Pseudo R2 = 0.3350 ------------------------------------------------------------------------------ close | Coef. Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- lived | -.0355651 .0154349 -2.304 0.021 -.0658168 -.0053133 educ | -.2042185 .0940803 -2.171 0.030 -.3886124 -.0198246 contam | 1.451658 .4911553 2.956 0.003 .4890117 2.414305 hsc | 2.460228 .5164483 4.764 0.000 1.448008 3.472448 nodad | -1.90518 .7502902 -2.539 0.011 -3.375722 -.4346386 _cons | 2.183335 1.342716 1.626 0.104 -.4483392 4.815009 ------------------------------------------------------------------------------
Figure 7.10, page 242.
use https://stats.idre.ucla.edu/stat/stata/examples/rwg/toxic, clear logistic close lived educ contam hsc nodad Logit estimates Number of obs = 153 LR chi2(5) = 66.56 Prob > chi2 = 0.0000 Log likelihood = -71.326227 Pseudo R2 = 0.3181 ------------------------------------------------------------------------------ close | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval] ---------+-------------------------------------------------------------------- lived | .9611269 .0148794 -2.561 0.010 .9324019 .9907369 educ | .8214643 .0760781 -2.124 0.034 .6851041 .9849652 contam | 3.663985 1.746363 2.724 0.006 1.439614 9.325267 hsc | 9.76251 4.787244 4.647 0.000 3.733856 25.52498 nodad | .1771164 .128458 -2.387 0.017 .0427468 .7338607 ------------------------------------------------------------------------------ predict lhat predict x, ddeviance predict b, dbeta graph twoway scatter x lhat [weight=b], msymbol(oh) xlabel(0(.2)1) ylabel(0(1)7)