Table 3.2, page 37; figure 3.1, page 39 and table 3.3, page 38.
use https://stats.idre.ucla.edu/stat/stata/examples/smss/murder1, clear /* raw frequency distribution */ tabulate murder murder rate | Freq. Percent Cum. ------------+----------------------------------- 1.6 | 1 2.00 2.00 1.7 | 1 2.00 4.00 2 | 1 2.00 6.00 2.3 | 1 2.00 8.00 2.9 | 1 2.00 10.00 3 | 1 2.00 12.00 3.1 | 1 2.00 14.00 3.4 | 3 6.00 20.00 3.6 | 1 2.00 22.00 3.8 | 1 2.00 24.00 3.9 | 3 6.00 30.00 4.4 | 1 2.00 32.00 4.6 | 1 2.00 34.00 5 | 1 2.00 36.00 5.2 | 1 2.00 38.00 5.3 | 1 2.00 40.00 5.8 | 1 2.00 42.00 6 | 1 2.00 44.00 6.3 | 1 2.00 46.00 6.4 | 1 2.00 48.00 6.6 | 1 2.00 50.00 6.8 | 1 2.00 52.00 6.9 | 1 2.00 54.00 7.5 | 1 2.00 56.00 8 | 1 2.00 58.00 8.3 | 1 2.00 60.00 8.4 | 1 2.00 62.00 8.6 | 1 2.00 64.00 8.9 | 1 2.00 66.00 9 | 1 2.00 68.00 9.8 | 1 2.00 70.00 10.2 | 2 4.00 74.00 10.3 | 1 2.00 76.00 10.4 | 1 2.00 78.00 11.3 | 2 4.00 82.00 11.4 | 2 4.00 86.00 11.6 | 1 2.00 88.00 11.9 | 1 2.00 90.00 12.7 | 1 2.00 92.00 13.1 | 1 2.00 94.00 13.3 | 1 2.00 96.00 13.5 | 1 2.00 98.00 20.3 | 1 2.00 100.00 ------------+----------------------------------- Total | 50 100.00 recode murder (min/2.9=1 0.0-2.9) (3/5.9=2 3.0-5.9) (6/8.9=3 6.0-8.9) (9/11.9=4 9.0-11.9) /// (12/14.9=5 12.0-14.9) (15/17.9=6 15.0-17.9) (18/max=7 18.0-20.9), gen(rmurder) histogram rmurder, discrete xlabel(1(1)7)
tabulate rmurder RECODE of | murder | (murder | rate) | Freq. Percent Cum. ------------+----------------------------------- 0.0-2.9 | 5 10.00 10.00 3.0-5.9 | 16 32.00 42.00 6.0-8.9 | 12 24.00 66.00 9.0-11.9 | 12 24.00 90.00 12.0-14.9 | 4 8.00 98.00 18.0-20.9 | 1 2.00 100.00 ------------+----------------------------------- Total | 50 100.00
Figure 3.4, page 41.
stem murder Stem-and-leaf plot for murder (murder rate) murder rounded to nearest multiple of .1 plot in units of .1 1* | 67 2* | 039 3* | 0144468999 4* | 46 5* | 0238 6* | 034689 7* | 5 8* | 03469 9* | 08 10* | 2234 11* | 334469 12* | 7 13* | 135 14* | 15* | 16* | 17* | 18* | 19* | 20* | 3
Canada data for figure 3.5, page 43.
use https://stats.idre.ucla.edu/stat/stata/examples/smss/murder2, clear bysort country: stem murder, line(1) ----------------------------------------------------------------------------------------- -> country = USA Stem-and-leaf plot for murder (murder rate) murder rounded to nearest multiple of .1 plot in units of .1 1* | 67 2* | 039 3* | 0144468999 4* | 46 5* | 0238 6* | 034689 7* | 5 8* | 03469 9* | 08 10* | 2234 11* | 334469 12* | 7 13* | 135 14* | 15* | 16* | 17* | 18* | 19* | 20* | 3 ----------------------------------------------------------------------------------------- -> country = Canada Stem-and-leaf plot for murder (murder rate) murder rounded to nearest multiple of .1 plot in units of .1 0* | 7 1* | 123 2* | 023679
Table 3.6, page 46.
use https://stats.idre.ucla.edu/stat/stata/examples/smss/femecon, clear list +-----------------------------------------+ | country activity region | |-----------------------------------------| 1. | austria 60 west europe | 2. | belgium 47 west europe | 3. | denmark 77 west europe | 4. | france 64 west europe | 5. | ireland 41 west europe | |-----------------------------------------| 6. | italy 44 west europe | 7. | netherlands 42 west europe | 8. | norway 68 west europe | 9. | portugal 51 west europe | 10. | spain 31 west europe | |-----------------------------------------| 11. | sweden 77 west europe | 12. | switzerland 60 west europe | 13. | united kingdom 60 west europe | 14. | bulgaria 88 east europe | 15. | czech republic 84 east europe | |-----------------------------------------| 16. | hungary 70 east europe | 17. | poland 77 east europe | 18. | romania 77 east europe | 19. | slovakia 81 east europe | +-----------------------------------------+
Example 3.4, page 45 and 48.
summarize activity if region==2 Variable | Obs Mean Std. Dev. Min Max -------------+-------------------------------------------------------- activity | 6 79.5 6.284903 70 88 summarize activity if region==1 Variable | Obs Mean Std. Dev. Min Max -------------+-------------------------------------------------------- activity | 13 55.53846 14.23385 31 77 /* alternative method */ tabstat activity, by(region) stat(n mean sd min max) Summary for variables: activity by categories of: region region | N mean sd min max ------------+-------------------------------------------------- west europe | 13 55.53846 14.23385 31 77 east europe | 6 79.5 6.284903 70 88 ------------+-------------------------------------------------- Total | 19 63.10526 16.64297 31 88 -------------------------------------------------------------- /* mean for all of Europe, page 48 */ /* manual computation */ display (13*55.5+6*79.5)/(13+6) 63.078947 /* using the summarize command */ summarize activity Variable | Obs Mean Std. Dev. Min Max -------------+-------------------------------------------------------- activity | 19 63.10526 16.64297 31 88
Example 3.5, page 47.
clear input income 10200 10400 10700 11200 11300 11500 200000 endsave mnincome, replace
summarize income
Variable | Obs Mean Std. Dev. Min Max ————-+——————————————————– income | 7 37900 71481 10200 200000
summarize income in 1/6
Variable | Obs Mean Std. Dev. Min Max ————-+——————————————————– income | 6 10883.33 526.9409 10200 11500
Various medians, page 49.
use https://stats.idre.ucla.edu/stat/stata/examples/smss/mnincome, clear summarize income, detail income ------------------------------------------------------------- Percentiles Smallest 1% 10200 10200 5% 10200 10400 10% 10200 10700 Obs 7 25% 10400 11200 Sum of Wgt. 7 50% 11200 Mean 37900 Largest Std. Dev. 71481 75% 11500 11200 90% 200000 11300 Variance 5.11e+09 95% 200000 11500 Skewness 2.041047 99% 200000 200000 Kurtosis 5.166244 use https://stats.idre.ucla.edu/stat/stata/examples/smss/femecon, clear tabstat activity, by(region) stat(n mean median) Summary for variables: activity by categories of: region region | N mean p50 ------------+------------------------------ west europe | 13 55.53846 60 east europe | 6 79.5 79 ------------+------------------------------ Total | 19 63.10526 64 -------------------------------------------
Example 3.6, page 49.
clear input degree freq 1 38012 2 65291 3 33191 4 7570 5 22845 6 7599 7 3110 end label define edu 1 "no hs" 2 "hs only" 3 "some coll" 4 "associate" 5 "bachelors" /// 6 "masters" 7 "doctorate" label values degree edu tab d [fw = freq] degree | Freq. Percent Cum. ------------+----------------------------------- no hs | 38,012 21.40 21.40 hs only | 65,291 36.76 58.16 some coll | 33,191 18.69 76.85 associate | 7,570 4.26 81.11 bachelors | 22,845 12.86 93.97 masters | 7,599 4.28 98.25 doctorate | 3,110 1.75 100.00 ------------+----------------------------------- Total | 177,618 100.00 summarize d [fw = freq], detail degree ------------------------------------------------------------- Percentiles Smallest 1% 1 1 5% 1 2 10% 1 3 Obs 177618 25% 2 4 Sum of Wgt. 177618 50% 2 Mean 2.702631 Largest Std. Dev. 1.535418 75% 3 4 90% 5 5 Variance 2.357509 95% 6 6 Skewness .9384876 99% 7 7 Kurtosis 2.990797
Example 3.7, page 51.
use https://stats.idre.ucla.edu/stat/stata/examples/smss/murder1, clear set obs 51 replace sid=51 in 51 replace state="wash dc" in 51 replace murder=78.5 in 51 summarize murder, detail murder rate ------------------------------------------------------------- Percentiles Smallest 1% 1.6 1.6 5% 2 1.7 10% 3 2 Obs 51 25% 3.9 2.3 Sum of Wgt. 51 50% 6.8 Mean 8.727451 Largest Std. Dev. 10.71758 75% 10.4 13.3 90% 12.7 13.5 Variance 114.8664 95% 13.5 20.3 Skewness 5.552901 99% 78.5 78.5 Kurtosis 36.70193
Percentiles, page 53.
use https://stats.idre.ucla.edu/stat/stata/examples/smss/murder1, clear summarize murder, detail murder rate ------------------------------------------------------------- Percentiles Smallest 1% 1.6 1.6 5% 2 1.7 10% 2.95 2 Obs 50 25% 3.9 2.3 Sum of Wgt. 50 50% 6.7 Mean 7.332 Largest Std. Dev. 3.984021 75% 10.3 13.1 90% 12.3 13.3 Variance 15.87242 95% 13.3 13.5 Skewness .7050897 99% 20.3 20.3 Kurtosis 3.420989 /* interquartile range */ display 10.3-3.9 6.4 /* alternative method */ tabstat murder, stat(iqr) variable | iqr -------------+---------- murder | 6.4 ------------------------
Example 3.8, page 58.
clear input score sample 0 1 4 1 4 1 5 1 7 1 10 1 0 2 0 2 1 2 9 2 10 2 10 2 end list +----------------+ | score sample | |----------------| 1. | 0 1 | 2. | 4 1 | 3. | 4 1 | 4. | 5 1 | 5. | 7 1 | |----------------| 6. | 10 1 | 7. | 0 2 | 8. | 0 2 | 9. | 1 2 | 10. | 9 2 | |----------------| 11. | 10 2 | 12. | 10 2 | +----------------+ tabstat score, by(sample) stat(n mean sd var) Summary for variables: score by categories of: sample sample | N mean sd variance ---------+---------------------------------------- 1 | 6 5 3.34664 11.2 2 | 6 5 5.138093 26.4 ---------+---------------------------------------- Total | 12 5 4.134115 17.09091 --------------------------------------------------
Table 3.9, page 62.
use https://stats.idre.ucla.edu/stat/stata/examples/smss/aidsdat, clear tabulate aids [fw=freq] aids | Freq. Percent Cum. ------------+----------------------------------- 0 | 1,214 75.97 75.97 1 | 204 12.77 88.74 2 | 85 5.32 94.06 3 | 49 3.07 97.12 4 | 19 1.19 98.31 5 | 13 0.81 99.12 6 | 5 0.31 99.44 7 | 8 0.50 99.94 8 | 1 0.06 100.00 ------------+----------------------------------- Total | 1,598 100.00 sum aids [fw=freq], detail aids ------------------------------------------------------------- Percentiles Smallest 1% 0 0 5% 0 1 10% 0 2 Obs 1598 25% 0 3 Sum of Wgt. 1598 50% 0 Mean .4730914 Largest Std. Dev. 1.088548 75% 0 5 90% 2 6 Variance 1.184936 95% 3 7 Skewness 3.170576 99% 5 8 Kurtosis 14.87321
Figure 3.17, page 63.
use https://stats.idre.ucla.edu/stat/stata/examples/smss/murder2, clear graph box murder, over(country)