The short answer is that you interpret quantile regression coefficients just like you do ordinary regression coefficients. The long answer is that you interpret quantile regression coefficients almost just like ordinary regression coefficients.
We can illustrate this with a couple of examples using the hsb2 dataset.
use https://stats.idre.ucla.edu/stat/stata/notes/hsb2, clear tabstat write, by(female) stat(p25 p50 p75) Summary for variables: write by categories of: female female | p25 p50 p75 -------+------------------------------ male | 41 52 59 female | 50 57 62 -------+------------------------------ Total | 45.5 54 60 --------------------------------------
We will begin by running median and .75 quantile regression models without any predictors.
qreg write Iteration 1: WLS sum of weighted deviations = 1595.95 Iteration 1: sum of abs. weighted deviations = 1591 Iteration 2: sum of abs. weighted deviations = 1571 Median regression Number of obs = 200 Raw sum of deviations 1571 (about 54) Min sum of deviations 1571 Pseudo R2 = 0.0000 ------------------------------------------------------------------------------ write | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- _cons | 54 1.239519 43.57 0.000 51.55572 56.44428 ------------------------------------------------------------------------------ qreg write, quantile(.75) Iteration 1: WLS sum of weighted deviations = 1237.9502 Iteration 1: sum of abs. weighted deviations = 1202.5 Iteration 2: sum of abs. weighted deviations = 1084.5 75 Quantile regression Number of obs = 200 Raw sum of deviations 1084.5 (about 60) Min sum of deviations 1084.5 Pseudo R2 = 0.0000 ------------------------------------------------------------------------------ write | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- _cons | 60 .6665574 90.01 0.000 58.68558 61.31442 ------------------------------------------------------------------------------
In the median regression the constant is the median of the sample while in the .75 quantile regression the constant is the 75th percentile for the sample.
Next, we’ll add the binary predictor female to the model.
qreg write female Iteration 1: WLS sum of weighted deviations = 1543.9433 Iteration 1: sum of abs. weighted deviations = 1545 Iteration 2: sum of abs. weighted deviations = 1542 Iteration 3: sum of abs. weighted deviations = 1536 Median regression Number of obs = 200 Raw sum of deviations 1571 (about 54) Min sum of deviations 1536 Pseudo R2 = 0.0223 ------------------------------------------------------------------------------ write | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- female | 5 2.611711 1.91 0.057 -.1503394 10.15034 _cons | 52 1.927268 26.98 0.000 48.19939 55.80061 ------------------------------------------------------------------------------ predict p50 (option xb assumed; fitted values) tabulate p50 Fitted | values | Freq. Percent Cum. ------------+----------------------------------- 52 | 91 45.50 45.50 57 | 109 54.50 100.00 ------------+----------------------------------- Total | 200 100.00 qreg write female, quantile(.75) Iteration 1: WLS sum of weighted deviations = 1204.3893 Iteration 1: sum of abs. weighted deviations = 1272 Iteration 2: sum of abs. weighted deviations = 1154.5 Iteration 3: sum of abs. weighted deviations = 1060 75 Quantile regression Number of obs = 200 Raw sum of deviations 1084.5 (about 60) Min sum of deviations 1060 Pseudo R2 = 0.0226 ------------------------------------------------------------------------------ write | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- female | 3 1.23163 2.44 0.016 .5712035 5.428796 _cons | 59 .9385943 62.86 0.000 57.14908 60.85092 ------------------------------------------------------------------------------ predict p75 (option xb assumed; fitted values) tabulate p75 Fitted | values | Freq. Percent Cum. ------------+----------------------------------- 59 | 91 45.50 45.50 62 | 109 54.50 100.00 ------------+----------------------------------- Total | 200 100.00
From this point on I’ll describe what is going on in the median regression model. The interpretation for the .75 quantile regression is basically the same except that you substitute the term 75th percentile for the term median.
With the binary predictor, the constant is median for group coded zero (males) and the coefficient is the difference in medians between males and female (see the tabstat above).
Looking at the tabulated predicted scores we see that we get two values, the conditional median for males (52) and the conditional median for female (57).
Now, let me show you something that is really neat about quantile regression. I will replace the highest value of write (67) with the value of 670 and rerun these analyses.
replace write=670 if write==67 (7 real changes made) qreg write female Iteration 1: WLS sum of weighted deviations = 8319.5083 Iteration 1: sum of abs. weighted deviations = 6544 Iteration 2: sum of abs. weighted deviations = 6156 Iteration 3: sum of abs. weighted deviations = 5757 Median regression Number of obs = 200 Raw sum of deviations 5792 (about 54) Min sum of deviations 5757 Pseudo R2 = 0.0060 ------------------------------------------------------------------------------ write | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- female | 5 2.611711 1.91 0.057 -.1503394 10.15034 _cons | 52 1.927268 26.98 0.000 48.19939 55.80061 ------------------------------------------------------------------------------ qreg write female, quantile(.75) Iteration 1: WLS sum of weighted deviations = 11445.07 Iteration 1: sum of abs. weighted deviations = 7582 Iteration 2: sum of abs. weighted deviations = 7461 Iteration 3: sum of abs. weighted deviations = 7391.5 75 Quantile regression Number of obs = 200 Raw sum of deviations 7416 (about 60) Min sum of deviations 7391.5 Pseudo R2 = 0.0033 ------------------------------------------------------------------------------ write | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- female | 3 1.23163 2.44 0.016 .5712035 5.428796 _cons | 59 .9385943 62.86 0.000 57.14908 60.85092 ------------------------------------------------------------------------------
Notice that neither the coefficients nor the standard errors changed. This is because changing this extreme score does not change either the median or the 75th percentile. The only changes that affect the results are when a value crosses a quantile boundary. For example, changing a value of 58 to 580 would not affect the median but would affect the 75th percentile.
For the last example, we will reload the data and use a continuous predictor in the model.
use https://stats.idre.ucla.edu/stat/stata/notes/hsb2, clear qreg write socst Iteration 1: WLS sum of weighted deviations = 1219.9071 Iteration 1: sum of abs. weighted deviations = 1219.9333 Iteration 2: sum of abs. weighted deviations = 1212.8 Iteration 3: sum of abs. weighted deviations = 1212.5667 Iteration 4: sum of abs. weighted deviations = 1209.375 Iteration 5: sum of abs. weighted deviations = 1208.9 Median regression Number of obs = 200 Raw sum of deviations 1571 (about 54) Min sum of deviations 1208.9 Pseudo R2 = 0.2305 ------------------------------------------------------------------------------ write | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- socst | .6333333 .0571053 11.09 0.000 .5207206 .7459461 _cons | 20.03333 3.069487 6.53 0.000 13.98025 26.08642 ------------------------------------------------------------------------------ predict double p50 (option xb assumed; fitted values) qreg write socst, quantile(.75) Iteration 1: WLS sum of weighted deviations = 992.87 Iteration 1: sum of abs. weighted deviations = 1003.2667 Iteration 2: sum of abs. weighted deviations = 950.85 Iteration 3: sum of abs. weighted deviations = 936.30001 Iteration 4: sum of abs. weighted deviations = 928.66667 Iteration 5: sum of abs. weighted deviations = 926.07501 Iteration 6: sum of abs. weighted deviations = 924.30001 75 Quantile regression Number of obs = 200 Raw sum of deviations 1084.5 (about 60) Min sum of deviations 924.3 Pseudo R2 = 0.1477 ------------------------------------------------------------------------------ write | Coef. Std. Err. t P>|t| [95% Conf. Interval] -------------+---------------------------------------------------------------- socst | .4 .0408158 9.80 0.000 .3195104 .4804896 _cons | 37.6 2.187081 17.19 0.000 33.28704 41.91296 ------------------------------------------------------------------------------ predict double p75 (option xb assumed; fitted values)
With the continuous predictor socst the constant is the predicted value when socst is zero. The quantile regression coefficient tells us that for every one unit change in socst that the predicted value of write will increase by .6333333.
We can show this by listing the predictor with the associated predicted values for two adjacent values. Notice that for the one unit change from 41 to 42 in socst the predicted value increases by .633333.
sort socst list socst p50 p75 in 42/43 +--------------------------+ | socst p50 p75 | |--------------------------| 42. | 41 46 54 | 43. | 42 46.633333 54.4 | +--------------------------+