The purpose of this seminar is to give users an introduction to analyzing multinomial logistic models using Stata. In addition to the built-in Stata commands we will be demonstrating the use of a number on user-written ado’s, in particular, listcoef, fitstat, prchange, prtab, etc. To find out more about these programs or to download them type search followed by the program name in the Stata command window (example: search listcoef). Or, you can download the complete spostado package by typing the following in the Stata command window:
net from http://www.indiana.edu/~jslsoc/stata/ net install spostado
These add-on programs ease the running and interpretation of ordinal logistic models.
Binary Response Variable Example
Let’s begin with an example using a binary response variable. We will see that the results of an multinomial logistic model are exactly the same as for a traditional logistic model.
use https://stats.idre.ucla.edu/stat/stata/seminars/stata_BeyondBinaryLogistic/honors2, clear logit honors female Iteration 0: log likelihood = -115.64441 Iteration 1: log likelihood = -113.68907 Iteration 2: log likelihood = -113.67691 Iteration 3: log likelihood = -113.6769 Logit estimates Number of obs = 200 LR chi2(1) = 3.94 Prob > chi2 = 0.0473 Log likelihood = -113.6769 Pseudo R2 = 0.0170 ------------------------------------------------------------------------------ honors | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- female | .6513707 .3336752 1.95 0.051 -.0026207 1.305362 _cons | -1.400088 .2631619 -5.32 0.000 -1.915876 -.8842998 ------------------------------------------------------------------------------ mlogit honors female Iteration 0: log likelihood = -115.64441 Iteration 1: log likelihood = -113.68907 Iteration 2: log likelihood = -113.67691 Iteration 3: log likelihood = -113.6769 Multinomial logistic regression Number of obs = 200 LR chi2(1) = 3.94 Prob > chi2 = 0.0473 Log likelihood = -113.6769 Pseudo R2 = 0.0170 ------------------------------------------------------------------------------ honors | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- 1 | female | .6513707 .3336752 1.95 0.051 -.0026207 1.305362 _cons | -1.400088 .2631619 -5.32 0.000 -1.915876 -.8842998 ------------------------------------------------------------------------------ (Outcome honors==0 is the comparison group) predict p0 p1 (option p assumed; predicted probabilities) list female honors p0 p1 in 1/20, nolabel +---------------------------------------+ | female honors p0 p1 | |---------------------------------------| 1. | 1 0 .6788991 .3211009 | 2. | 0 0 .8021978 .1978022 | 3. | 0 0 .8021978 .1978022 | 4. | 1 1 .6788991 .3211009 | 5. | 1 1 .6788991 .3211009 | |---------------------------------------| 6. | 0 0 .8021978 .1978022 | 7. | 1 0 .6788991 .3211009 | 8. | 1 0 .6788991 .3211009 | 9. | 1 0 .6788991 .3211009 | 10. | 1 0 .6788991 .3211009 | |---------------------------------------| 11. | 1 1 .6788991 .3211009 | 12. | 0 0 .8021978 .1978022 | 13. | 0 0 .8021978 .1978022 | 14. | 1 0 .6788991 .3211009 | 15. | 1 0 .6788991 .3211009 | |---------------------------------------| 16. | 1 0 .6788991 .3211009 | 17. | 0 0 .8021978 .1978022 | 18. | 1 0 .6788991 .3211009 | 19. | 1 1 .6788991 .3211009 | 20. | 1 0 .6788991 .3211009 | +---------------------------------------+
3-Category Response Variable Example
codebook prog prog type of program ---------------------------------------------------------------------------------------------------------- type: numeric (float) label: sel range: [1,3] units: 1 unique values: 3 missing .: 0/200 tabulation: Freq. Numeric Label 45 1 general 105 2 academic 50 3 vocation mlogit prog honors Iteration 0: log likelihood = -204.09667 Iteration 1: log likelihood = -196.10509 Iteration 2: log likelihood = -196.02441 Iteration 3: log likelihood = -196.02417 Multinomial logistic regression Number of obs = 200 LR chi2(2) = 16.15 Prob > chi2 = 0.0003 Log likelihood = -196.02417 Pseudo R2 = 0.0396 ------------------------------------------------------------------------------ prog | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- general | honors | -1.206168 .4577753 -2.63 0.008 -2.103391 -.3089452 _cons | -.5368011 .2042068 -2.63 0.009 -.937039 -.1365632 -------------+---------------------------------------------------------------- vocation | honors | -1.506922 .479347 -3.14 0.002 -2.446425 -.5674196 _cons | -.3901976 .1952227 -2.00 0.046 -.772827 -.0075682 ------------------------------------------------------------------------------ (Outcome prog==academic is the comparison group) mlogit, rrr /* relative risk ratios */ Multinomial logistic regression Number of obs = 200 LR chi2(2) = 16.15 Prob > chi2 = 0.0003 Log likelihood = -196.02417 Pseudo R2 = 0.0396 ------------------------------------------------------------------------------ prog | RRR Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- general | honors | .2993421 .1370314 -2.63 0.008 .1220419 .734221 -------------+---------------------------------------------------------------- vocation | honors | .2215909 .1062189 -3.14 0.002 .0866026 .5669866 ------------------------------------------------------------------------------ (Outcome prog==academic is the comparison group)
Next, we look at some of the Long & Freese utilities.
listcoef mlogit (N=200): Factor Change in the Odds of prog Variable: honors (sd= .44) Odds comparing| Group 1 vs Group 2| b z P>|z| e^b e^bStdX ------------------+--------------------------------------------- general -vocation | 0.30075 0.502 0.615 1.3509 1.1423 general -academic | -1.20617 -2.635 0.008 0.2993 0.5865 vocation-general | -0.30075 -0.502 0.615 0.7403 0.8754 vocation-academic | -1.50692 -3.144 0.002 0.2216 0.5134 academic-general | 1.20617 2.635 0.008 3.3407 1.7052 academic-vocation | 1.50692 3.144 0.002 4.5128 1.9478 ---------------------------------------------------------------- listcoef, percent mlogit (N=200): Percentage Change in the Odds of prog Variable: honors (sd= .44) Odds comparing| Group 1 vs Group 2| b z P>|z| % %StdX ------------------+--------------------------------------------- general -vocation | 0.30075 0.502 0.615 35.1 14.2 general -academic | -1.20617 -2.635 0.008 -70.1 -41.4 vocation-general | -0.30075 -0.502 0.615 -26.0 -12.5 vocation-academic | -1.50692 -3.144 0.002 -77.8 -48.7 academic-general | 1.20617 2.635 0.008 234.1 70.5 academic-vocation | 1.50692 3.144 0.002 351.3 94.8 ---------------------------------------------------------------- fitstat, saving(M1) Measures of Fit for mlogit of prog Log-Lik Intercept Only: -204.097 Log-Lik Full Model: -196.024 D(196): 392.048 LR(2): 16.145 Prob > LR: 0.000 McFadden's R2: 0.040 McFadden's Adj R2: 0.020 Maximum Likelihood R2: 0.078 Cragg & Uhler's R2: 0.089 Count R2: 0.525 Adj Count R2: 0.000 AIC: 2.000 AIC*n: 400.048 BIC: -646.422 BIC': -5.548 prchange mlogit: Changes in Predicted Probabilities for prog honors Avg|Chg| general vocation academic 0->1 .20836007 -.12642793 -.18611217 .31254011 general vocation academic Pr(y|x) .2260426 .24168304 .53227437 honors x= .265 sd(x)= .442441 prtab honors
mlogit: Predicted probabilities for prog Predicted probability of outcome 1 (general) ---------------------- honors | Prediction ----------+----------- 0 | 0.2585 1 | 0.1321 ---------------------- Predicted probability of outcome 3 (vocation) ---------------------- honors | Prediction ----------+----------- 0 | 0.2993 1 | 0.1132 ---------------------- Predicted probability of outcome 2 (academic) ---------------------- honors | Prediction ----------+----------- 0 | 0.4422 1 | 0.7547 ---------------------- honors x= .265
predict p1 p2 p3 (option p assumed; predicted probabilities) list honors prog p1 p2 p3 in 1/20, nolabel +------------------------------------------------+ | honors prog p1 p2 p3 | |------------------------------------------------| 1. | 0 1 .2585034 .4421769 .2993197 | 2. | 0 3 .2585034 .4421769 .2993197 | 3. | 0 1 .2585034 .4421769 .2993197 | 4. | 0 3 .2585034 .4421769 .2993197 | 5. | 0 2 .2585034 .4421769 .2993197 | |------------------------------------------------| 6. | 0 2 .2585034 .4421769 .2993197 | 7. | 0 1 .2585034 .4421769 .2993197 | 8. | 0 2 .2585034 .4421769 .2993197 | 9. | 0 1 .2585034 .4421769 .2993197 | 10. | 0 2 .2585034 .4421769 .2993197 | |------------------------------------------------| 11. | 0 3 .2585034 .4421769 .2993197 | 12. | 1 2 .1320755 .754717 .1132075 | 13. | 1 2 .1320755 .754717 .1132075 | 14. | 1 2 .1320755 .754717 .1132075 | 15. | 0 2 .2585034 .4421769 .2993197 | |------------------------------------------------| 16. | 0 1 .2585034 .4421769 .2993197 | 17. | 0 2 .2585034 .4421769 .2993197 | 18. | 0 1 .2585034 .4421769 .2993197 | 19. | 1 2 .1320755 .754717 .1132075 | 20. | 0 1 .2585034 .4421769 .2993197 | +------------------------------------------------+ drop p1 p2 p3
An Example Using a Continuous Predictor
mlogit prog science Iteration 0: log likelihood = -204.09667 Iteration 1: log likelihood = -196.49276 Iteration 2: log likelihood = -196.32825 Iteration 3: log likelihood = -196.32807 Multinomial logistic regression Number of obs = 200 LR chi2(2) = 15.54 Prob > chi2 = 0.0004 Log likelihood = -196.32807 Pseudo R2 = 0.0381 ------------------------------------------------------------------------------ prog | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- general | science | -.0151248 .0188094 -0.80 0.421 -.0519906 .021741 _cons | -.0437733 1.010225 -0.04 0.965 -2.023778 1.936231 -------------+---------------------------------------------------------------- vocation | science | -.0708203 .0189509 -3.74 0.000 -.1079633 -.0336774 _cons | 2.837688 .956162 2.97 0.003 .9636445 4.711731 ------------------------------------------------------------------------------ (Outcome prog==academic is the comparison group) test science ( 1) [general]science = 0 ( 2) [vocation]science = 0 chi2( 2) = 14.16 Prob > chi2 = 0.0008 listcoef mlogit (N=200): Factor Change in the Odds of prog Variable: science (sd= 9.9) Odds comparing| Group 1 vs Group 2| b z P>|z| e^b e^bStdX ------------------+--------------------------------------------- general -vocation | 0.05570 2.540 0.011 1.0573 1.7357 general -academic | -0.01512 -0.804 0.421 0.9850 0.8609 vocation-general | -0.05570 -2.540 0.011 0.9458 0.5761 vocation-academic | -0.07082 -3.737 0.000 0.9316 0.4960 academic-general | 0.01512 0.804 0.421 1.0152 1.1615 academic-vocation | 0.07082 3.737 0.000 1.0734 2.0161 ---------------------------------------------------------------- fitstat, using(M1) Measures of Fit for mlogit of prog Current Saved Difference Model: mlogit mlogit N: 200 200 0 Log-Lik Intercept Only: -204.097 -204.097 0.000 Log-Lik Full Model: -196.328 -196.024 -0.304 D: 392.656(196) 392.048(196) 0.608(0) LR: 15.537(2) 16.145(2) 0.608(0) Prob > LR: 0.000 0.000 . McFadden's R2: 0.038 0.040 -0.001 McFadden's Adj R2: 0.018 0.020 -0.001 Maximum Likelihood R2: 0.075 0.078 -0.003 Cragg & Uhler's R2: 0.086 0.089 -0.003 Count R2: 0.545 0.525 0.020 Adj Count R2: 0.042 0.000 0.042 AIC: 2.003 2.000 0.003 AIC*n: 400.656 400.048 0.608 BIC: -645.814 -646.422 0.608 BIC': -4.941 -5.548 0.608 Difference of 0.608 in BIC' provides weak support for saved model. Note: p-value for difference in LR is only valid if models are nested. predict p1 p2 p3 (option p assumed; predicted probabilities) list science prog p1 p2 p3 in 1/20, nolabel +-------------------------------------------------+ | science prog p1 p2 p3 | |-------------------------------------------------| 1. | 47 1 .2258013 .480244 .2939547 | 2. | 63 3 .2356738 .6384762 .1258499 | 3. | 58 1 .2371181 .5956004 .1672814 | 4. | 53 3 .2346923 .5465702 .2187374 | 5. | 53 2 .2346923 .5465702 .2187374 | |-------------------------------------------------| 6. | 63 2 .2356738 .6384762 .1258499 | 7. | 53 1 .2346923 .5465702 .2187374 | 8. | 39 2 .203372 .3832462 .4133818 | 9. | 58 1 .2371181 .5956004 .1672814 | 10. | 50 2 .2311026 .5143352 .2545622 | |-------------------------------------------------| 11. | 53 3 .2346923 .5465702 .2187374 | 12. | 63 2 .2356738 .6384762 .1258499 | 13. | 61 2 .2366667 .6220615 .1412718 | 14. | 55 2 .2361734 .5669116 .196915 | 15. | 31 2 .1711333 .2857407 .5431261 | |-------------------------------------------------| 16. | 50 1 .2311026 .5143352 .2545622 | 17. | 50 2 .2311026 .5143352 .2545622 | 18. | 58 1 .2371181 .5956004 .1672814 | 19. | 55 2 .2361734 .5669116 .196915 | 20. | 53 1 .2346923 .5465702 .2187374 | +-------------------------------------------------+ sort science twoway connect p1 p2 p3 science, msym(i i i) summarize p1 p2 p3 Variable | Obs Mean Std. Dev. Min Max -------------+-------------------------------------------------------- p1 | 200 .225 .0166541 .1483478 .2371181 p2 | 200 .525 .1044329 .2296548 .7127639 p3 | 200 .25 .119155 .0644656 .6219974 drop p1 p2 p3
Here are some more of the Long & Freeze utilities.
prchange mlogit: Changes in Predicted Probabilities for prog science Avg|Chg| general vocation academic Min->Max .37168786 .07442269 -.55753179 .4831091 -+1/2 .00786675 .00113033 -.01180014 .01066977 -+sd/2 .07776304 .01132315 -.11664455 .10532141 MargEfct .00786688 .00113019 -.01180032 .01067013 general vocation academic Pr(y|x) .23351446 .23203561 .53444993 science x= 51.85 sd(x)= 9.90089 prtab science mlogit: Predicted probabilities for prog Predicted probability of outcome 1 (general) ---------------------- science | score | Prediction ----------+----------- 26 | 0.1483 29 | 0.1621 31 | 0.1711 33 | 0.1799 34 | 0.1841 35 | 0.1882 36 | 0.1922 39 | 0.2034 40 | 0.2068 42 | 0.2131 44 | 0.2188 45 | 0.2213 46 | 0.2236 47 | 0.2258 48 | 0.2278 49 | 0.2295 50 | 0.2311 51 | 0.2325 53 | 0.2347 54 | 0.2355 55 | 0.2362 56 | 0.2367 57 | 0.2370 58 | 0.2371 59 | 0.2371 61 | 0.2367 63 | 0.2357 64 | 0.2350 65 | 0.2342 66 | 0.2333 67 | 0.2323 69 | 0.2299 72 | 0.2259 74 | 0.2228 ---------------------- Predicted probability of outcome 3 (vocation) ---------------------- science | score | Prediction ----------+----------- 26 | 0.6220 29 | 0.5752 31 | 0.5431 33 | 0.5106 34 | 0.4943 35 | 0.4780 36 | 0.4617 39 | 0.4134 40 | 0.3976 42 | 0.3666 44 | 0.3366 45 | 0.3220 46 | 0.3078 47 | 0.2940 48 | 0.2804 49 | 0.2673 50 | 0.2546 51 | 0.2422 53 | 0.2187 54 | 0.2076 55 | 0.1969 56 | 0.1866 57 | 0.1767 58 | 0.1673 59 | 0.1582 61 | 0.1413 63 | 0.1258 64 | 0.1187 65 | 0.1119 66 | 0.1054 67 | 0.0993 69 | 0.0879 72 | 0.0731 74 | 0.0645 ---------------------- Predicted probability of outcome 2 (academic) ---------------------- science | score | Prediction ----------+----------- 26 | 0.2297 29 | 0.2627 31 | 0.2857 33 | 0.3095 34 | 0.3216 35 | 0.3338 36 | 0.3461 39 | 0.3832 40 | 0.3956 42 | 0.4203 44 | 0.4446 45 | 0.4567 46 | 0.4685 47 | 0.4802 48 | 0.4918 49 | 0.5032 50 | 0.5143 51 | 0.5253 53 | 0.5466 54 | 0.5569 55 | 0.5669 56 | 0.5767 57 | 0.5863 58 | 0.5956 59 | 0.6047 61 | 0.6221 63 | 0.6385 64 | 0.6463 65 | 0.6539 66 | 0.6613 67 | 0.6685 69 | 0.6821 72 | 0.7011 74 | 0.7128 ---------------------- science x= 51.85 mlogtest, combine lrcomb **** Wald tests for combining outcome categories Ho: All coefficients except intercepts associated with given pair of outcomes are 0 (i.e., categories can be collapsed). Categories tested | chi2 df P>chi2 ------------------+------------------------ general-vocation | 6.449 1 0.011 general-academic | 0.647 1 0.421 vocation-academic | 13.966 1 0.000 ------------------------------------------- **** LR tests for combining outcome categories Ho: All coefficients except intercepts associated with given pair of outcomes are 0 (i.e., categories can be collapsed). Categories tested | chi2 df P>chi2 ------------------+------------------------ general-vocation | 6.776 1 0.009 general-academic | 0.646 1 0.421 vocation-academic | 15.326 1 0.000 ------------------------------------------- tabstat science, by(prog) Summary for variables: science by categories of: prog (type of program) prog | mean ---------+---------- general | 52.44444 academic | 53.8 vocation | 47.22 ---------+---------- Total | 51.85
A Two Predictor Example
mlogit prog science honors, nolog Multinomial logistic regression Number of obs = 200 LR chi2(4) = 25.11 Prob > chi2 = 0.0000 Log likelihood = -191.54213 Pseudo R2 = 0.0615 ------------------------------------------------------------------------------ prog | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- general | science | .0065831 .0204231 0.32 0.747 -.0334454 .0466117 honors | -1.260566 .4881122 -2.58 0.010 -2.217248 -.3038836 _cons | -.8718198 1.060829 -0.82 0.411 -2.951007 1.207367 -------------+---------------------------------------------------------------- vocation | science | -.0530555 .0203973 -2.60 0.009 -.0930334 -.0130776 honors | -1.010628 .5178674 -1.95 0.051 -2.02563 .004373 _cons | 2.171415 .9955349 2.18 0.029 .2202025 4.122628 ------------------------------------------------------------------------------ (Outcome prog==academic is the comparison group) test science ( 1) [general]science = 0 ( 2) [vocation]science = 0 chi2( 2) = 8.39 Prob > chi2 = 0.0151 test honors ( 1) [general]honors = 0 ( 2) [vocation]honors = 0 chi2( 2) = 8.88 Prob > chi2 = 0.0118 listcoef mlogit (N=200): Factor Change in the Odds of prog Variable: science (sd= 9.9) Odds comparing| Group 1 vs Group 2| b z P>|z| e^b e^bStdX ------------------+--------------------------------------------- general -vocation | 0.05964 2.537 0.011 1.0615 1.8048 general -academic | 0.00658 0.322 0.747 1.0066 1.0673 vocation-general | -0.05964 -2.537 0.011 0.9421 0.5541 vocation-academic | -0.05306 -2.601 0.009 0.9483 0.5914 academic-general | -0.00658 -0.322 0.747 0.9934 0.9369 academic-vocation | 0.05306 2.601 0.009 1.0545 1.6910 ---------------------------------------------------------------- Variable: honors (sd= .44) Odds comparing| Group 1 vs Group 2| b z P>|z| e^b e^bStdX ------------------+--------------------------------------------- general -vocation | -0.24994 -0.390 0.696 0.7788 0.8953 general -academic | -1.26057 -2.583 0.010 0.2835 0.5725 vocation-general | 0.24994 0.390 0.696 1.2839 1.1169 vocation-academic | -1.01063 -1.952 0.051 0.3640 0.6395 academic-general | 1.26057 2.583 0.010 3.5274 1.7467 academic-vocation | 1.01063 1.952 0.051 2.7473 1.5638 ---------------------------------------------------------------- fitstat, using(M1) Measures of Fit for mlogit of prog Current Saved Difference Model: mlogit mlogit N: 200 200 0 Log-Lik Intercept Only: -204.097 -204.097 0.000 Log-Lik Full Model: -191.542 -196.024 4.482 D: 383.084(194) 392.048(196) 8.964(2) LR: 25.109(4) 16.145(2) 8.964(2) Prob > LR: 0.000 0.000 0.011 McFadden's R2: 0.062 0.040 0.022 McFadden's Adj R2: 0.032 0.020 0.012 Maximum Likelihood R2: 0.118 0.078 0.040 Cragg & Uhler's R2: 0.136 0.089 0.046 Count R2: 0.540 0.525 0.015 Adj Count R2: 0.032 0.000 0.032 AIC: 1.975 2.000 -0.025 AIC*n: 395.084 400.048 -4.964 BIC: -644.789 -646.422 1.633 BIC': -3.916 -5.548 1.633 Difference of 1.633 in BIC' provides weak support for saved model. Note: p-value for difference in LR is only valid if models are nested. mlogtest, combine lrcomb **** Wald tests for combining outcome categories Ho: All coefficients except intercepts associated with given pair of outcomes are 0 (i.e., categories can be collapsed). Categories tested | chi2 df P>chi2 ------------------+------------------------ general-vocation | 6.671 2 0.036 general-academic | 7.042 2 0.030 vocation-academic | 16.139 2 0.000 ------------------------------------------- **** LR tests for combining outcome categories Ho: All coefficients except intercepts associated with given pair of outcomes are 0 (i.e., categories can be collapsed). Categories tested | chi2 df P>chi2 ------------------+------------------------ general-vocation | 7.039 2 0.030 general-academic | 8.175 2 0.017 vocation-academic | 19.387 2 0.000 ------------------------------------------- prtab science honors mlogit: Predicted probabilities for prog Predicted probability of outcome 1 (general) -------------------------- science | honors score | 0 1 ----------+--------------- 26 | 0.1340 0.0724 29 | 0.1494 0.0785 31 | 0.1600 0.0825 33 | 0.1708 0.0866 34 | 0.1763 0.0886 35 | 0.1818 0.0906 36 | 0.1874 0.0926 39 | 0.2041 0.0985 40 | 0.2097 0.1004 42 | 0.2209 0.1042 44 | 0.2320 0.1079 45 | 0.2375 0.1097 46 | 0.2429 0.1116 47 | 0.2484 0.1133 48 | 0.2537 0.1151 49 | 0.2590 0.1168 50 | 0.2643 0.1186 51 | 0.2695 0.1203 53 | 0.2796 0.1236 54 | 0.2846 0.1252 55 | 0.2895 0.1268 56 | 0.2943 0.1284 57 | 0.2991 0.1300 58 | 0.3038 0.1315 59 | 0.3083 0.1330 61 | 0.3172 0.1360 63 | 0.3258 0.1389 64 | 0.3300 0.1403 65 | 0.3341 0.1417 66 | 0.3381 0.1431 67 | 0.3420 0.1445 69 | 0.3496 0.1472 72 | 0.3604 0.1511 74 | 0.3672 0.1536 -------------------------- Predicted probability of outcome 3 (vocation) -------------------------- science | honors score | 0 1 ----------+--------------- 26 | 0.5960 0.4133 29 | 0.5556 0.3747 31 | 0.5281 0.3499 33 | 0.5005 0.3257 34 | 0.4867 0.3140 35 | 0.4729 0.3025 36 | 0.4591 0.2913 39 | 0.4183 0.2590 40 | 0.4049 0.2488 42 | 0.3785 0.2292 44 | 0.3528 0.2107 45 | 0.3402 0.2019 46 | 0.3279 0.1933 47 | 0.3158 0.1850 48 | 0.3039 0.1770 49 | 0.2923 0.1693 50 | 0.2810 0.1619 51 | 0.2699 0.1547 53 | 0.2486 0.1411 54 | 0.2384 0.1346 55 | 0.2285 0.1285 56 | 0.2188 0.1225 57 | 0.2095 0.1169 58 | 0.2004 0.1114 59 | 0.1917 0.1062 61 | 0.1750 0.0963 63 | 0.1596 0.0873 64 | 0.1522 0.0831 65 | 0.1452 0.0791 66 | 0.1384 0.0752 67 | 0.1319 0.0716 69 | 0.1197 0.0647 72 | 0.1032 0.0555 74 | 0.0933 0.0501 -------------------------- Predicted probability of outcome 2 (academic) -------------------------- science | honors score | 0 1 ----------+--------------- 26 | 0.2700 0.5143 29 | 0.2951 0.5468 31 | 0.3119 0.5676 33 | 0.3287 0.5877 34 | 0.3370 0.5974 35 | 0.3453 0.6069 36 | 0.3535 0.6161 39 | 0.3776 0.6425 40 | 0.3854 0.6508 42 | 0.4006 0.6666 44 | 0.4152 0.6814 45 | 0.4223 0.6884 46 | 0.4292 0.6951 47 | 0.4358 0.7016 48 | 0.4423 0.7079 49 | 0.4486 0.7138 50 | 0.4547 0.7196 51 | 0.4606 0.7251 53 | 0.4717 0.7354 54 | 0.4770 0.7401 55 | 0.4820 0.7447 56 | 0.4868 0.7491 57 | 0.4914 0.7532 58 | 0.4958 0.7571 59 | 0.5000 0.7608 61 | 0.5077 0.7677 63 | 0.5146 0.7738 64 | 0.5178 0.7766 65 | 0.5207 0.7792 66 | 0.5235 0.7817 67 | 0.5261 0.7840 69 | 0.5307 0.7881 72 | 0.5365 0.7934 74 | 0.5395 0.7962 -------------------------- science honors x= 51.85 .265
Categorical Predictor Example
tabulate ses, gen(ses) ses | Freq. Percent Cum. ------------+----------------------------------- low | 47 23.50 23.50 middle | 95 47.50 71.00 high | 58 29.00 100.00 ------------+----------------------------------- Total | 200 100.00 mlogit prog ses1 ses2, nolog Multinomial logistic regression Number of obs = 200 LR chi2(4) = 16.78 Prob > chi2 = 0.0021 Log likelihood = -195.70519 Pseudo R2 = 0.0411 ------------------------------------------------------------------------------ prog | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- general | ses1 | 1.368595 .5000526 2.74 0.006 .3885097 2.34868 ses2 | .7519877 .4556845 1.65 0.099 -.1411374 1.645113 _cons | -1.540445 .367316 -4.19 0.000 -2.260371 -.8205189 -------------+---------------------------------------------------------------- vocation | ses1 | 1.332227 .5501167 2.42 0.015 .2540182 2.410436 ses2 | 1.441557 .470796 3.06 0.002 .5188139 2.3643 _cons | -1.791759 .4082444 -4.39 0.000 -2.591904 -.9916151 ------------------------------------------------------------------------------ (Outcome prog==academic is the comparison group) test ses1 ses2 ( 1) [general]ses1 = 0 ( 2) [vocation]ses1 = 0 ( 3) [general]ses2 = 0 ( 4) [vocation]ses2 = 0 chi2( 4) = 15.67 Prob > chi2 = 0.0035
Final Model: Three Predictors
mlogit prog science honors ses1 ses2, nolog Multinomial logistic regression Number of obs = 200 LR chi2(8) = 37.66 Prob > chi2 = 0.0000 Log likelihood = -185.26706 Pseudo R2 = 0.0923 ------------------------------------------------------------------------------ prog | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- general | science | .0196812 .0213451 0.92 0.357 -.0221545 .0615168 honors | -1.254872 .5053887 -2.48 0.013 -2.245416 -.2643289 ses1 | 1.323819 .5279468 2.51 0.012 .2890618 2.358575 ses2 | .5173172 .4725885 1.09 0.274 -.4089392 1.443574 _cons | -2.146701 1.201467 -1.79 0.074 -4.501532 .2081308 -------------+---------------------------------------------------------------- vocation | science | -.052548 .0215222 -2.44 0.015 -.0947306 -.0103653 honors | -.8064186 .5309991 -1.52 0.129 -1.847158 .2343204 ses1 | .8638298 .5844485 1.48 0.139 -.2816682 2.009328 ses2 | 1.167853 .4932099 2.37 0.018 .2011791 2.134526 _cons | 1.280312 1.133052 1.13 0.258 -.9404289 3.501053 ------------------------------------------------------------------------------ (Outcome prog==academic is the comparison group) test science ( 1) [general]science = 0 ( 2) [vocation]science = 0 chi2( 2) = 9.28 Prob > chi2 = 0.0097 test honors ( 1) [general]honors = 0 ( 2) [vocation]honors = 0 chi2( 2) = 7.25 Prob > chi2 = 0.0267 test ses1 ses2 ( 1) [general]ses1 = 0 ( 2) [vocation]ses1 = 0 ( 3) [general]ses2 = 0 ( 4) [vocation]ses2 = 0 chi2( 4) = 9.88 Prob > chi2 = 0.0424 listcoef mlogit (N=200): Factor Change in the Odds of prog Variable: science (sd= 9.9) Odds comparing| Group 1 vs Group 2| b z P>|z| e^b e^bStdX ------------------+--------------------------------------------- general -vocation | 0.07223 2.905 0.004 1.0749 2.0445 general -academic | 0.01968 0.922 0.357 1.0199 1.2151 vocation-general | -0.07223 -2.905 0.004 0.9303 0.4891 vocation-academic | -0.05255 -2.442 0.015 0.9488 0.5944 academic-general | -0.01968 -0.922 0.357 0.9805 0.8229 academic-vocation | 0.05255 2.442 0.015 1.0540 1.6825 ---------------------------------------------------------------- Variable: honors (sd= .44) Odds comparing| Group 1 vs Group 2| b z P>|z| e^b e^bStdX ------------------+--------------------------------------------- general -vocation | -0.44845 -0.684 0.494 0.6386 0.8200 general -academic | -1.25487 -2.483 0.013 0.2851 0.5740 vocation-general | 0.44845 0.684 0.494 1.5659 1.2195 vocation-academic | -0.80642 -1.519 0.129 0.4465 0.6999 academic-general | 1.25487 2.483 0.013 3.5074 1.7423 academic-vocation | 0.80642 1.519 0.129 2.2399 1.4287 ---------------------------------------------------------------- Variable: ses1 (sd= .43) Odds comparing| Group 1 vs Group 2| b z P>|z| e^b e^bStdX ------------------+--------------------------------------------- general -vocation | 0.45999 0.688 0.491 1.5841 1.2159 general -academic | 1.32382 2.507 0.012 3.7577 1.7554 vocation-general | -0.45999 -0.688 0.491 0.6313 0.8224 vocation-academic | 0.86383 1.478 0.139 2.3722 1.4437 academic-general | -1.32382 -2.507 0.012 0.2661 0.5697 academic-vocation | -0.86383 -1.478 0.139 0.4215 0.6927 ---------------------------------------------------------------- Variable: ses2 (sd= .5) Odds comparing| Group 1 vs Group 2| b z P>|z| e^b e^bStdX ------------------+--------------------------------------------- general -vocation | -0.65054 -1.083 0.279 0.5218 0.7220 general -academic | 0.51732 1.095 0.274 1.6775 1.2956 vocation-general | 0.65054 1.083 0.279 1.9166 1.3850 vocation-academic | 1.16785 2.368 0.018 3.2151 1.7944 academic-general | -0.51732 -1.095 0.274 0.5961 0.7718 academic-vocation | -1.16785 -2.368 0.018 0.3110 0.5573 ---------------------------------------------------------------- fitstat, using(M1) Measures of Fit for mlogit of prog Current Saved Difference Model: mlogit mlogit N: 200 200 0 Log-Lik Intercept Only: -204.097 -204.097 0.000 Log-Lik Full Model: -185.267 -196.024 10.757 D: 370.534(190) 392.048(196) 21.514(6) LR: 37.659(8) 16.145(2) 21.514(6) Prob > LR: 0.000 0.000 0.001 McFadden's R2: 0.092 0.040 0.053 McFadden's Adj R2: 0.043 0.020 0.023 Maximum Likelihood R2: 0.172 0.078 0.094 Cragg & Uhler's R2: 0.197 0.089 0.108 Count R2: 0.575 0.525 0.050 Adj Count R2: 0.105 0.000 0.105 AIC: 1.953 2.000 -0.048 AIC*n: 390.534 400.048 -9.514 BIC: -636.146 -646.422 10.276 BIC': 4.727 -5.548 10.276 Difference of 10.276 in BIC' provides very strong support for saved model. Note: p-value for difference in LR is only valid if models are nested. prchange, x(honors=1 ses1=0 ses2=1) mlogit: Changes in Predicted Probabilities for prog science Avg|Chg| general vocation academic Min->Max .31191427 .13955039 -.46787138 .32832104 -+1/2 .0064501 .00306802 -.00967517 .00660712 -+sd/2 .06380373 .03033344 -.0957056 .06537217 MargEfct .00645018 .00306807 -.00967527 .0066072 honors Avg|Chg| general vocation academic 0->1 .15676552 -.132423 -.1027253 .23514825 ses1 Avg|Chg| general vocation academic 0->1 .1669159 .14041305 .10996082 -.25037384 ses2 Avg|Chg| general vocation academic 0->1 .11027237 .0266413 .13876726 -.16540855 general vocation academic Pr(y|x) .10382493 .22670016 .6694749 science honors ses1 ses2 x= 51.85 1 0 1 sd(x)= 9.90089 .442441 .425063 .500628 prtab science honors, x(ses1=0 ses2=1) mlogit: Predicted probabilities for prog Predicted probability of outcome 1 (general) -------------------------- science | honors score | 0 1 ----------+--------------- 26 | 0.0765 0.0387 29 | 0.0897 0.0445 31 | 0.0994 0.0486 33 | 0.1098 0.0530 34 | 0.1153 0.0553 35 | 0.1209 0.0576 36 | 0.1267 0.0600 39 | 0.1450 0.0674 40 | 0.1514 0.0700 42 | 0.1647 0.0753 44 | 0.1784 0.0808 45 | 0.1855 0.0836 46 | 0.1927 0.0865 47 | 0.1999 0.0893 48 | 0.2073 0.0923 49 | 0.2147 0.0952 50 | 0.2222 0.0982 51 | 0.2298 0.1012 53 | 0.2451 0.1074 54 | 0.2528 0.1105 55 | 0.2605 0.1136 56 | 0.2683 0.1168 57 | 0.2761 0.1200 58 | 0.2838 0.1233 59 | 0.2916 0.1265 61 | 0.3072 0.1331 63 | 0.3226 0.1398 64 | 0.3303 0.1432 65 | 0.3380 0.1466 66 | 0.3456 0.1500 67 | 0.3532 0.1535 69 | 0.3682 0.1604 72 | 0.3903 0.1710 74 | 0.4048 0.1782 -------------------------- Predicted probability of outcome 3 (vocation) -------------------------- science | honors score | 0 1 ----------+--------------- 26 | 0.6898 0.5465 29 | 0.6517 0.5059 31 | 0.6251 0.4787 33 | 0.5976 0.4517 34 | 0.5836 0.4382 35 | 0.5694 0.4248 36 | 0.5551 0.4116 39 | 0.5116 0.3725 40 | 0.4970 0.3598 42 | 0.4678 0.3350 44 | 0.4387 0.3111 45 | 0.4242 0.2994 46 | 0.4099 0.2880 47 | 0.3957 0.2769 48 | 0.3817 0.2660 49 | 0.3678 0.2554 50 | 0.3541 0.2451 51 | 0.3407 0.2350 53 | 0.3145 0.2158 54 | 0.3018 0.2066 55 | 0.2893 0.1976 56 | 0.2772 0.1890 57 | 0.2654 0.1807 58 | 0.2538 0.1726 59 | 0.2426 0.1648 61 | 0.2212 0.1501 63 | 0.2011 0.1364 64 | 0.1915 0.1300 65 | 0.1823 0.1238 66 | 0.1734 0.1179 67 | 0.1649 0.1122 69 | 0.1488 0.1015 72 | 0.1270 0.0871 74 | 0.1140 0.0786 -------------------------- Predicted probability of outcome 2 (academic) -------------------------- science | honors score | 0 1 ----------+--------------- 26 | 0.2338 0.4149 29 | 0.2586 0.4496 31 | 0.2755 0.4727 33 | 0.2926 0.4953 34 | 0.3012 0.5065 35 | 0.3097 0.5176 36 | 0.3182 0.5284 39 | 0.3434 0.5600 40 | 0.3516 0.5701 42 | 0.3675 0.5896 44 | 0.3829 0.6081 45 | 0.3903 0.6170 46 | 0.3974 0.6255 47 | 0.4044 0.6338 48 | 0.4111 0.6417 49 | 0.4175 0.6494 50 | 0.4237 0.6567 51 | 0.4295 0.6637 53 | 0.4405 0.6769 54 | 0.4455 0.6830 55 | 0.4501 0.6887 56 | 0.4545 0.6942 57 | 0.4586 0.6993 58 | 0.4623 0.7042 59 | 0.4658 0.7087 61 | 0.4716 0.7168 63 | 0.4763 0.7238 64 | 0.4781 0.7268 65 | 0.4797 0.7296 66 | 0.4810 0.7321 67 | 0.4819 0.7344 69 | 0.4830 0.7381 72 | 0.4827 0.7418 74 | 0.4812 0.7432 -------------------------- science honors ses1 ses2 x= 51.85 .265 0 1