You can view movies of this seminar via the links below.
The purpose of this seminar is to give users an introduction to analyzing multinomial logistic models using Stata. In addition to the built-in Stata commands we will be demonstrating the use of a number on user-written ado’s, in particular, listcoef, fitstat, prchange, prtab, etc. To find out more about these programs or to download them type search followed by the program name in the Stata command window (example: search listcoef). These add-on programs ease the running and interpretation of ordinal logistic models.
Binary Response Variable Example
Let’s begin with an example using a binary response variable. We will see that the results of an multinomial logistic model are exactly the same as for a traditional logistic model.
use https://stats.idre.ucla.edu/stat/stata/seminars/stata_BeyondBinaryLogistic/honors, clear logit honors female Iteration 0: log likelihood = -115.64441 Iteration 1: log likelihood = -113.68907 Iteration 2: log likelihood = -113.67691 Iteration 3: log likelihood = -113.6769 Logit estimates Number of obs = 200 LR chi2(1) = 3.94 Prob > chi2 = 0.0473 Log likelihood = -113.6769 Pseudo R2 = 0.0170 ------------------------------------------------------------------------------ honors | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- female | .6513707 .3336752 1.95 0.051 -.0026207 1.305362 _cons | -1.400088 .2631619 -5.32 0.000 -1.915876 -.8842998 ------------------------------------------------------------------------------ mlogit honors female Iteration 0: log likelihood = -115.64441 Iteration 1: log likelihood = -113.68907 Iteration 2: log likelihood = -113.67691 Iteration 3: log likelihood = -113.6769 Multinomial logistic regression Number of obs = 200 LR chi2(1) = 3.94 Prob > chi2 = 0.0473 Log likelihood = -113.6769 Pseudo R2 = 0.0170 ------------------------------------------------------------------------------ honors | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- 1 | female | .6513707 .3336752 1.95 0.051 -.0026207 1.305362 _cons | -1.400088 .2631619 -5.32 0.000 -1.915876 -.8842998 ------------------------------------------------------------------------------ (Outcome honors==0 is the comparison group) predict p0 p1 (option p assumed; predicted probabilities) list female honors p0 p1 in 1/20, nolabel +---------------------------------------+ | female honors p0 p1 | |---------------------------------------| 1. | 1 0 .6788991 .3211009 | 2. | 0 0 .8021978 .1978022 | 3. | 0 0 .8021978 .1978022 | 4. | 1 1 .6788991 .3211009 | 5. | 1 1 .6788991 .3211009 | |---------------------------------------| 6. | 0 0 .8021978 .1978022 | 7. | 1 0 .6788991 .3211009 | 8. | 1 0 .6788991 .3211009 | 9. | 1 0 .6788991 .3211009 | 10. | 1 0 .6788991 .3211009 | |---------------------------------------| 11. | 1 1 .6788991 .3211009 | 12. | 0 0 .8021978 .1978022 | 13. | 0 0 .8021978 .1978022 | 14. | 1 0 .6788991 .3211009 | 15. | 1 0 .6788991 .3211009 | |---------------------------------------| 16. | 1 0 .6788991 .3211009 | 17. | 0 0 .8021978 .1978022 | 18. | 1 0 .6788991 .3211009 | 19. | 1 1 .6788991 .3211009 | 20. | 1 0 .6788991 .3211009 | +---------------------------------------+
3-Category Response Variable Example
use https://stats.idre.ucla.edu/stat/stata/seminars/stata_BeyondBinaryLogistic/hsb2, clear (highschool and beyond (200 cases)) codebook prog prog type of program ---------------------------------------------------------------------------------------------------------- type: numeric (float) label: sel range: [1,3] units: 1 unique values: 3 missing .: 0/200 tabulation: Freq. Numeric Label 45 1 general 105 2 academic 50 3 vocation mlogit prog female Iteration 0: log likelihood = -204.09667 Iteration 1: log likelihood = -204.07028 Iteration 2: log likelihood = -204.07028 Multinomial logistic regression Number of obs = 200 LR chi2(2) = 0.05 Prob > chi2 = 0.9739 Log likelihood = -204.07028 Pseudo R2 = 0.0001 ------------------------------------------------------------------------------ prog | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- general | female | -.076764 .3574964 -0.21 0.830 -.7774441 .6239161 _cons | -.8056252 .2624798 -3.07 0.002 -1.320076 -.2911742 -------------+---------------------------------------------------------------- vocation | female | -.0499528 .345012 -0.14 0.885 -.7261638 .6262583 _cons | -.7146534 .2544698 -2.81 0.005 -1.213405 -.2159018 ------------------------------------------------------------------------------ (Outcome prog==academic is the comparison group) mlogit, rrr /* relative risk ratios */ Multinomial logistic regression Number of obs = 200 LR chi2(2) = 0.05 Prob > chi2 = 0.9739 Log likelihood = -204.07028 Pseudo R2 = 0.0001 ------------------------------------------------------------------------------ prog | RRR Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- general | female | .9261084 .3310804 -0.21 0.830 .4595791 1.866222 -------------+---------------------------------------------------------------- vocation | female | .9512744 .3282011 -0.14 0.885 .4837612 1.870598 ------------------------------------------------------------------------------ (Outcome prog==academic is the comparison group)
Next, we look at some of the Long & Freese utilities.
listcoef mlogit (N=200): Factor Change in the Odds of prog Variable: female (sd= .5) Odds comparing| Group 1 vs Group 2| b z P>|z| e^b e^bStdX ------------------+--------------------------------------------- general -vocation | -0.02681 -0.065 0.948 0.9735 0.9867 general -academic | -0.07676 -0.215 0.830 0.9261 0.9624 vocation-general | 0.02681 0.065 0.948 1.0272 1.0135 vocation-academic | -0.04995 -0.145 0.885 0.9513 0.9754 academic-general | 0.07676 0.215 0.830 1.0798 1.0391 academic-vocation | 0.04995 0.145 0.885 1.0512 1.0253 ---------------------------------------------------------------- listcoef, percent mlogit (N=200): Percentage Change in the Odds of prog Variable: female (sd= .5) Odds comparing| Group 1 vs Group 2| b z P>|z| % %StdX ------------------+--------------------------------------------- general -vocation | -0.02681 -0.065 0.948 -2.6 -1.3 general -academic | -0.07676 -0.215 0.830 -7.4 -3.8 vocation-general | 0.02681 0.065 0.948 2.7 1.3 vocation-academic | -0.04995 -0.145 0.885 -4.9 -2.5 academic-general | 0.07676 0.215 0.830 8.0 3.9 academic-vocation | 0.04995 0.145 0.885 5.1 2.5 ---------------------------------------------------------------- fitstat Measures of Fit for mlogit of prog Log-Lik Intercept Only: -204.097 Log-Lik Full Model: -204.070 D(196): 408.141 LR(2): 0.053 Prob > LR: 0.974 McFadden's R2: 0.000 McFadden's Adj R2: -0.019 Maximum Likelihood R2: 0.000 Cragg & Uhler's R2: 0.000 Count R2: 0.525 Adj Count R2: 0.000 AIC: 2.081 AIC*n: 416.141 BIC: -630.330 BIC': 10.544 prchange mlogit: Changes in Predicted Probabilities for prog female Avg|Chg| general vocation academic 0->1 .01041771 -.01058574 -.00504084 .01562655 general vocation academic Pr(y|x) .22496811 .25002041 .52501148 female x= .545 sd(x)= .49922 prtab female mlogit: Predicted probabilities for prog Predicted probability of outcome 1 (general) ---------------------- female | Prediction ----------+----------- male | 0.2308 female | 0.2202 ---------------------- Predicted probability of outcome 3 (vocation) ---------------------- female | Prediction ----------+----------- male | 0.2527 female | 0.2477 ---------------------- Predicted probability of outcome 2 (academic) ---------------------- female | Prediction ----------+----------- male | 0.5165 female | 0.5321 ---------------------- female x= .545 predict p1 p2 p3 (option p assumed; predicted probabilities) list female prog p1 p2 p3 in 1/20, nolabel +------------------------------------------------+ | female prog p1 p2 p3 | |------------------------------------------------| 1. | 0 1 .2307692 .5164835 .2527473 | 2. | 1 3 .2201835 .5321101 .2477064 | 3. | 0 1 .2307692 .5164835 .2527473 | 4. | 0 3 .2307692 .5164835 .2527473 | 5. | 0 2 .2307692 .5164835 .2527473 | |------------------------------------------------| 6. | 0 2 .2307692 .5164835 .2527473 | 7. | 0 1 .2307692 .5164835 .2527473 | 8. | 0 2 .2307692 .5164835 .2527473 | 9. | 0 1 .2307692 .5164835 .2527473 | 10. | 0 2 .2307692 .5164835 .2527473 | |------------------------------------------------| 11. | 0 3 .2307692 .5164835 .2527473 | 12. | 0 2 .2307692 .5164835 .2527473 | 13. | 0 2 .2307692 .5164835 .2527473 | 14. | 0 2 .2307692 .5164835 .2527473 | 15. | 0 2 .2307692 .5164835 .2527473 | |------------------------------------------------| 16. | 0 1 .2307692 .5164835 .2527473 | 17. | 0 2 .2307692 .5164835 .2527473 | 18. | 0 1 .2307692 .5164835 .2527473 | 19. | 0 2 .2307692 .5164835 .2527473 | 20. | 0 1 .2307692 .5164835 .2527473 | +------------------------------------------------+ drop p1 p2 p3
An Example Using a Continuous Predictor
mlogit prog read Iteration 0: log likelihood = -204.09667 Iteration 1: log likelihood = -185.28771 Iteration 2: log likelihood = -184.59416 Iteration 3: log likelihood = -184.58662 Iteration 4: log likelihood = -184.58661 Multinomial logistic regression Number of obs = 200 LR chi2(2) = 39.02 Prob > chi2 = 0.0000 Log likelihood = -184.58661 Pseudo R2 = 0.0956 ------------------------------------------------------------------------------ prog | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- general | read | -.0703559 .0200906 -3.50 0.000 -.1097328 -.0309791 _cons | 2.874114 1.054187 2.73 0.006 .8079463 4.940282 -------------+---------------------------------------------------------------- vocation | read | -.1164723 .0223442 -5.21 0.000 -.1602662 -.0726784 _cons | 5.189645 1.116495 4.65 0.000 3.001355 7.377934 ------------------------------------------------------------------------------ (Outcome prog==academic is the comparison group) listcoef mlogit (N=200): Factor Change in the Odds of prog Variable: read (sd= 10) Odds comparing| Group 1 vs Group 2| b z P>|z| e^b e^bStdX ------------------+--------------------------------------------- general -vocation | 0.04612 1.924 0.054 1.0472 1.6045 general -academic | -0.07036 -3.502 0.000 0.9321 0.4861 vocation-general | -0.04612 -1.924 0.054 0.9549 0.6232 vocation-academic | -0.11647 -5.213 0.000 0.8901 0.3030 academic-general | 0.07036 3.502 0.000 1.0729 2.0572 academic-vocation | 0.11647 5.213 0.000 1.1235 3.3009 ---------------------------------------------------------------- fitstat Measures of Fit for mlogit of prog Log-Lik Intercept Only: -204.097 Log-Lik Full Model: -184.587 D(196): 369.173 LR(2): 39.020 Prob > LR: 0.000 McFadden's R2: 0.096 McFadden's Adj R2: 0.076 Maximum Likelihood R2: 0.177 Cragg & Uhler's R2: 0.204 Count R2: 0.585 Adj Count R2: 0.126 AIC: 1.886 AIC*n: 377.173 BIC: -669.297 BIC': -28.423 predict p1 p2 p3 (option p assumed; predicted probabilities) list read prog p1 p2 p3 in 1/20, nolabel +----------------------------------------------+ | read prog p1 p2 p3 | |----------------------------------------------| 1. | 57 1 .2063555 .6427623 .1508822 | 2. | 68 3 .1220411 .8242286 .0537303 | 3. | 44 1 .2793571 .3486395 .3720033 | 4. | 63 3 .1585986 .7534682 .0879332 | 5. | 47 2 .2702068 .4164652 .3133279 | |----------------------------------------------| 6. | 44 2 .2793571 .3486395 .3720033 | 7. | 50 1 .2555427 .4864202 .2580371 | 8. | 34 2 .2681388 .1655863 .5662749 | 9. | 63 1 .1585986 .7534682 .0879332 | 10. | 57 2 .2063555 .6427623 .1508822 | |----------------------------------------------| 11. | 60 3 .182365 .7015224 .1161126 | 12. | 57 2 .2063555 .6427623 .1508822 | 13. | 73 2 .091319 .8767558 .0319252 | 14. | 54 2 .229263 .5782328 .1925042 | 15. | 45 2 .2769624 .3708454 .3521922 | |----------------------------------------------| 16. | 42 1 .2821275 .3058806 .4119919 | 17. | 47 2 .2702068 .4164652 .3133279 | 18. | 57 1 .2063555 .6427623 .1508822 | 19. | 68 2 .1220411 .8242286 .0537303 | 20. | 55 1 .2218377 .6002877 .1778745 | +----------------------------------------------+ sort read scatter p1 p2 p3 read, connect(l l l) msym(i i i)summarize p1 p2 p3 Variable | Obs Mean Std. Dev. Min Max -------------+-------------------------------------------------------- p1 | 200 .225 .0582549 .0759783 .2825051 p2 | 200 .525 .2033302 .0966327 .9008916 p3 | 200 .25 .1509281 .0231301 .6647014 list read p1 p2 p3 if p1>p2 +---------------------------------------+ | read p1 p2 p3 | |---------------------------------------| 1. | 28 .2386659 .0966327 .6647014 | 2. | 31 .2547603 .1273887 .617851 | 3. | 34 .2681388 .1655863 .5662749 | 4. | 34 .2681388 .1655863 .5662749 | 5. | 34 .2681388 .1655863 .5662749 | |---------------------------------------| 6. | 34 .2681388 .1655863 .5662749 | 7. | 34 .2681388 .1655863 .5662749 | 8. | 34 .2681388 .1655863 .5662749 | 9. | 35 .2717949 .1800783 .5481268 | 10. | 36 .2749785 .1954673 .5295542 | |---------------------------------------| 11. | 36 .2749785 .1954673 .5295542 | 12. | 36 .2749785 .1954673 .5295542 | 13. | 37 .2776492 .2117517 .5105991 | 14. | 37 .2776492 .2117517 .5105991 | 15. | 39 .2813043 .2469546 .4717411 | |---------------------------------------| 16. | 39 .2813043 .2469546 .4717411 | 17. | 39 .2813043 .2469546 .4717411 | 18. | 39 .2813043 .2469546 .4717411 | 19. | 39 .2813043 .2469546 .4717411 | 20. | 39 .2813043 .2469546 .4717411 | |---------------------------------------| 21. | 39 .2813043 .2469546 .4717411 | 22. | 39 .2813043 .2469546 .4717411 | +---------------------------------------+ list read prog p1 p2 p3 if p1>p2 & p1>p3 drop p1 p2 p3
Here are some more of the Long & Freeze utilities.
prchange mlogit: Changes in Predicted Probabilities for prog read Avg|Chg| general vocation academic Min->Max .53617262 -.16268767 -.64157127 .80425891 -+1/2 .01529801 -.00669396 -.01625305 .02294701 -+sd/2 .15414272 -.06625439 -.1649597 .23121408 MargEfct .0153006 -.00669624 -.01625465 .02295089 general vocation academic Pr(y|x) .24166824 .22017884 .53815293 read x= 52.23 sd(x)= 10.2529 prtab read mlogit: Predicted probabilities for prog Predicted probability of outcome 1 (general) ---------------------- reading | score | Prediction ----------+----------- 28 | 0.2387 31 | 0.2548 34 | 0.2681 35 | 0.2718 36 | 0.2750 37 | 0.2776 39 | 0.2813 41 | 0.2825 42 | 0.2821 43 | 0.2811 44 | 0.2794 45 | 0.2770 46 | 0.2739 47 | 0.2702 48 | 0.2659 50 | 0.2555 52 | 0.2432 53 | 0.2364 54 | 0.2293 55 | 0.2218 57 | 0.2064 60 | 0.1824 61 | 0.1744 63 | 0.1586 65 | 0.1434 66 | 0.1361 68 | 0.1220 71 | 0.1028 73 | 0.0913 76 | 0.0760 ---------------------- Predicted probability of outcome 3 (vocation) ---------------------- reading | score | Prediction ----------+----------- 28 | 0.6647 31 | 0.6179 34 | 0.5663 35 | 0.5481 36 | 0.5296 37 | 0.5106 39 | 0.4717 41 | 0.4320 42 | 0.4120 43 | 0.3920 44 | 0.3720 45 | 0.3522 46 | 0.3326 47 | 0.3133 48 | 0.2944 50 | 0.2580 52 | 0.2239 53 | 0.2079 54 | 0.1925 55 | 0.1779 57 | 0.1509 60 | 0.1161 61 | 0.1060 63 | 0.0879 65 | 0.0725 66 | 0.0657 68 | 0.0537 71 | 0.0394 73 | 0.0319 76 | 0.0231 ---------------------- Predicted probability of outcome 2 (academic) ---------------------- reading | score | Prediction ----------+----------- 28 | 0.0966 31 | 0.1274 34 | 0.1656 35 | 0.1801 36 | 0.1955 37 | 0.2118 39 | 0.2470 41 | 0.2855 42 | 0.3059 43 | 0.3270 44 | 0.3486 45 | 0.3708 46 | 0.3935 47 | 0.4165 48 | 0.4397 50 | 0.4864 52 | 0.5329 53 | 0.5557 54 | 0.5782 55 | 0.6003 57 | 0.6428 60 | 0.7015 61 | 0.7196 63 | 0.7535 65 | 0.7841 66 | 0.7983 68 | 0.8242 71 | 0.8577 73 | 0.8768 76 | 0.9009 ---------------------- read x= 52.23 mlogtest, combine lrcomb **** Wald tests for combining outcome categories Ho: All coefficients except intercepts associated with given pair of outcomes are 0 (i.e., categories can be collapsed). Categories tested | chi2 df P>chi2 ------------------+------------------------ general-vocation | 3.703 1 0.054 general-academic | 12.264 1 0.000 vocation-academic | 27.172 1 0.000 ------------------------------------------- **** LR tests for combining outcome categories Ho: All coefficients except intercepts associated with given pair of outcomes are 0 (i.e., categories can be collapsed). Categories tested | chi2 df P>chi2 ------------------+------------------------ general-vocation | 3.838 1 0.050 general-academic | 13.660 1 0.000 vocation-academic | 35.553 1 0.000 -------------------------------------------
A Two Predictor Example
mlogit prog read female Iteration 0: log likelihood = -204.09667 Iteration 1: log likelihood = -185.12283 Iteration 2: log likelihood = -184.41244 Iteration 3: log likelihood = -184.40469 Iteration 4: log likelihood = -184.40469 Multinomial logistic regression Number of obs = 200 LR chi2(4) = 39.38 Prob > chi2 = 0.0000 Log likelihood = -184.40469 Pseudo R2 = 0.0965 ------------------------------------------------------------------------------ prog | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- general | read | -.0712123 .0202062 -3.52 0.000 -.1108158 -.0316089 female | -.1834744 .3726879 -0.49 0.623 -.9139293 .5469805 _cons | 3.019251 1.096285 2.75 0.006 .8705724 5.16793 -------------+---------------------------------------------------------------- vocation | read | -.1172833 .0224395 -5.23 0.000 -.161264 -.0733026 female | -.193847 .3800557 -0.51 0.610 -.9387425 .5510486 _cons | 5.33822 1.156404 4.62 0.000 3.07171 7.60473 ------------------------------------------------------------------------------ (Outcome prog==academic is the comparison group) listcoef mlogit (N=200): Factor Change in the Odds of prog Variable: read (sd= 10) Odds comparing| Group 1 vs Group 2| b z P>|z| e^b e^bStdX ------------------+--------------------------------------------- general -vocation | 0.04607 1.922 0.055 1.0471 1.6038 general -academic | -0.07121 -3.524 0.000 0.9313 0.4818 vocation-general | -0.04607 -1.922 0.055 0.9550 0.6235 vocation-academic | -0.11728 -5.227 0.000 0.8893 0.3004 academic-general | 0.07121 3.524 0.000 1.0738 2.0754 academic-vocation | 0.11728 5.227 0.000 1.1244 3.3284 ---------------------------------------------------------------- Variable: female (sd= .5) Odds comparing| Group 1 vs Group 2| b z P>|z| e^b e^bStdX ------------------+--------------------------------------------- general -vocation | 0.01037 0.025 0.980 1.0104 1.0052 general -academic | -0.18347 -0.492 0.623 0.8324 0.9125 vocation-general | -0.01037 -0.025 0.980 0.9897 0.9948 vocation-academic | -0.19385 -0.510 0.610 0.8238 0.9078 academic-general | 0.18347 0.492 0.623 1.2014 1.0959 academic-vocation | 0.19385 0.510 0.610 1.2139 1.1016 ---------------------------------------------------------------- fitstat Measures of Fit for mlogit of prog Log-Lik Intercept Only: -204.097 Log-Lik Full Model: -184.405 D(194): 368.809 LR(4): 39.384 Prob > LR: 0.000 McFadden's R2: 0.096 McFadden's Adj R2: 0.067 Maximum Likelihood R2: 0.179 Cragg & Uhler's R2: 0.205 Count R2: 0.590 Adj Count R2: 0.137 AIC: 1.904 AIC*n: 380.809 BIC: -659.064 BIC': -18.191 mlogtest, combine lrcomb **** Wald tests for combining outcome categories Ho: All coefficients except intercepts associated with given pair of outcomes are 0 (i.e., categories can be collapsed). Categories tested | chi2 df P>chi2 ------------------+------------------------ general-vocation | 3.697 2 0.157 general-academic | 12.455 2 0.002 vocation-academic | 27.333 2 0.000 ------------------------------------------- **** LR tests for combining outcome categories Ho: All coefficients except intercepts associated with given pair of outcomes are 0 (i.e., categories can be collapsed). Categories tested | chi2 df P>chi2 ------------------+------------------------ general-vocation | 3.833 2 0.147 general-academic | 13.916 2 0.001 vocation-academic | 35.841 2 0.000 ------------------------------------------- prtab read female mlogit: Predicted probabilities for prog Predicted probability of outcome 1 (general) -------------------------- reading | female score | male female ----------+--------------- 28 | 0.2406 0.2381 31 | 0.2577 0.2535 34 | 0.2723 0.2659 35 | 0.2764 0.2692 36 | 0.2801 0.2719 37 | 0.2833 0.2742 39 | 0.2881 0.2769 41 | 0.2905 0.2771 42 | 0.2907 0.2762 43 | 0.2902 0.2746 44 | 0.2890 0.2724 45 | 0.2872 0.2694 46 | 0.2846 0.2659 47 | 0.2814 0.2617 48 | 0.2775 0.2569 50 | 0.2678 0.2457 52 | 0.2559 0.2327 53 | 0.2492 0.2257 54 | 0.2422 0.2183 55 | 0.2347 0.2107 57 | 0.2191 0.1951 60 | 0.1944 0.1712 61 | 0.1861 0.1633 63 | 0.1696 0.1479 65 | 0.1536 0.1331 66 | 0.1459 0.1261 68 | 0.1310 0.1127 71 | 0.1105 0.0944 73 | 0.0981 0.0836 76 | 0.0816 0.0692 -------------------------- Predicted probability of outcome 3 (vocation) -------------------------- reading | female score | male female ----------+--------------- 28 | 0.6731 0.6593 31 | 0.6279 0.6113 34 | 0.5780 0.5585 35 | 0.5603 0.5399 36 | 0.5422 0.5209 37 | 0.5237 0.5016 39 | 0.4857 0.4619 41 | 0.4466 0.4216 42 | 0.4268 0.4013 43 | 0.4069 0.3810 44 | 0.3870 0.3609 45 | 0.3672 0.3410 46 | 0.3475 0.3213 47 | 0.3281 0.3020 48 | 0.3090 0.2831 50 | 0.2720 0.2470 52 | 0.2370 0.2133 53 | 0.2204 0.1975 54 | 0.2045 0.1825 55 | 0.1893 0.1682 57 | 0.1612 0.1420 60 | 0.1246 0.1085 61 | 0.1139 0.0989 63 | 0.0947 0.0817 65 | 0.0782 0.0670 66 | 0.0709 0.0606 68 | 0.0580 0.0494 71 | 0.0426 0.0361 73 | 0.0345 0.0291 76 | 0.0250 0.0210 -------------------------- Predicted probability of outcome 2 (academic) -------------------------- reading | female score | male female ----------+--------------- 28 | 0.0863 0.1026 31 | 0.1144 0.1352 34 | 0.1497 0.1756 35 | 0.1632 0.1909 36 | 0.1776 0.2071 37 | 0.1929 0.2243 39 | 0.2262 0.2612 41 | 0.2630 0.3013 42 | 0.2826 0.3225 43 | 0.3029 0.3444 44 | 0.3240 0.3667 45 | 0.3456 0.3896 46 | 0.3678 0.4128 47 | 0.3905 0.4363 48 | 0.4135 0.4600 50 | 0.4602 0.5073 52 | 0.5071 0.5540 53 | 0.5303 0.5768 54 | 0.5533 0.5992 55 | 0.5759 0.6211 57 | 0.6198 0.6629 60 | 0.6810 0.7203 61 | 0.7000 0.7378 63 | 0.7357 0.7705 65 | 0.7682 0.7998 66 | 0.7833 0.8133 68 | 0.8110 0.8379 71 | 0.8469 0.8695 73 | 0.8673 0.8873 76 | 0.8934 0.9098 -------------------------- read female x= 52.23 .545
Categorical Predictor Example
tabulate ses, gen(ses) ses | Freq. Percent Cum. ------------+----------------------------------- low | 47 23.50 23.50 middle | 95 47.50 71.00 high | 58 29.00 100.00 ------------+----------------------------------- Total | 200 100.00 mlogit prog ses1 ses2 Iteration 0: log likelihood = -204.09667 Iteration 1: log likelihood = -195.82855 Iteration 2: log likelihood = -195.70541 Iteration 3: log likelihood = -195.70519 Multinomial logistic regression Number of obs = 200 LR chi2(4) = 16.78 Prob > chi2 = 0.0021 Log likelihood = -195.70519 Pseudo R2 = 0.0411 ------------------------------------------------------------------------------ prog | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- general | ses1 | 1.368595 .5000526 2.74 0.006 .3885097 2.34868 ses2 | .7519877 .4556845 1.65 0.099 -.1411374 1.645113 _cons | -1.540445 .367316 -4.19 0.000 -2.260371 -.8205189 -------------+---------------------------------------------------------------- vocation | ses1 | 1.332227 .5501167 2.42 0.015 .2540182 2.410436 ses2 | 1.441557 .470796 3.06 0.002 .5188139 2.3643 _cons | -1.791759 .4082444 -4.39 0.000 -2.591904 -.9916151 ------------------------------------------------------------------------------ (Outcome prog==academic is the comparison group) test ses1 ses2 ( 1) [general]ses1 = 0 ( 2) [vocation]ses1 = 0 ( 3) [general]ses2 = 0 ( 4) [vocation]ses2 = 0 chi2( 4) = 15.67 Prob > chi2 = 0.0035
Final Model: Three Predictors
mlogit prog read female ses1 ses2 Iteration 0: log likelihood = -204.09667 Iteration 1: log likelihood = -180.65991 Iteration 2: log likelihood = -179.41794 Iteration 3: log likelihood = -179.38722 Iteration 4: log likelihood = -179.38719 Multinomial logistic regression Number of obs = 200 LR chi2(8) = 49.42 Prob > chi2 = 0.0000 Log likelihood = -179.38719 Pseudo R2 = 0.1211 ------------------------------------------------------------------------------ prog | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- general | read | -.0622009 .020823 -2.99 0.003 -.1030132 -.0213887 female | -.2907466 .3827223 -0.76 0.447 -1.040869 .4593754 ses1 | 1.053428 .5290998 1.99 0.046 .0164118 2.090445 ses2 | .5927571 .4697164 1.26 0.207 -.3278702 1.513384 _cons | 2.057293 1.205372 1.71 0.088 -.3051927 4.419779 -------------+---------------------------------------------------------------- vocation | read | -.1153246 .0235584 -4.90 0.000 -.1614982 -.069151 female | -.2128803 .3916879 -0.54 0.587 -.9805745 .5548139 ses1 | .7672021 .6016694 1.28 0.202 -.4120482 1.946452 ses2 | 1.222412 .50843 2.40 0.016 .2259076 2.218917 _cons | 4.415091 1.272291 3.47 0.001 1.921447 6.908735 ------------------------------------------------------------------------------ (Outcome prog==academic is the comparison group) test ses1 ses2 ( 1) [general]ses1 = 0 ( 2) [vocation]ses1 = 0 ( 3) [general]ses2 = 0 ( 4) [vocation]ses2 = 0 chi2( 4) = 9.88 Prob > chi2 = 0.0424 listcoef mlogit (N=200): Factor Change in the Odds of prog Variable: read (sd= 10) Odds comparing| Group 1 vs Group 2| b z P>|z| e^b e^bStdX ------------------+--------------------------------------------- general -vocation | 0.05312 2.117 0.034 1.0546 1.7240 general -academic | -0.06220 -2.987 0.003 0.9397 0.5285 vocation-general | -0.05312 -2.117 0.034 0.9483 0.5800 vocation-academic | -0.11532 -4.895 0.000 0.8911 0.3065 academic-general | 0.06220 2.987 0.003 1.0642 1.8922 academic-vocation | 0.11532 4.895 0.000 1.1222 3.2622 ---------------------------------------------------------------- Variable: female (sd= .5) Odds comparing| Group 1 vs Group 2| b z P>|z| e^b e^bStdX ------------------+--------------------------------------------- general -vocation | -0.07787 -0.181 0.856 0.9251 0.9619 general -academic | -0.29075 -0.760 0.447 0.7477 0.8649 vocation-general | 0.07787 0.181 0.856 1.0810 1.0396 vocation-academic | -0.21288 -0.543 0.587 0.8083 0.8992 academic-general | 0.29075 0.760 0.447 1.3374 1.1562 academic-vocation | 0.21288 0.543 0.587 1.2372 1.1121 ---------------------------------------------------------------- Variable: ses1 (sd= .43) Odds comparing| Group 1 vs Group 2| b z P>|z| e^b e^bStdX ------------------+--------------------------------------------- general -vocation | 0.28623 0.435 0.663 1.3314 1.1294 general -academic | 1.05343 1.991 0.046 2.8675 1.5648 vocation-general | -0.28623 -0.435 0.663 0.7511 0.8854 vocation-academic | 0.76720 1.275 0.202 2.1537 1.3856 academic-general | -1.05343 -1.991 0.046 0.3487 0.6390 academic-vocation | -0.76720 -1.275 0.202 0.4643 0.7217 ---------------------------------------------------------------- Variable: ses2 (sd= .5) Odds comparing| Group 1 vs Group 2| b z P>|z| e^b e^bStdX ------------------+--------------------------------------------- general -vocation | -0.62966 -1.070 0.285 0.5328 0.7296 general -academic | 0.59276 1.262 0.207 1.8090 1.3455 vocation-general | 0.62966 1.070 0.285 1.8770 1.3706 vocation-academic | 1.22241 2.404 0.016 3.3954 1.8441 academic-general | -0.59276 -1.262 0.207 0.5528 0.7432 academic-vocation | -1.22241 -2.404 0.016 0.2945 0.5423 ---------------------------------------------------------------- fitstat Measures of Fit for mlogit of prog Log-Lik Intercept Only: -204.097 Log-Lik Full Model: -179.387 D(190): 358.774 LR(8): 49.419 Prob > LR: 0.000 McFadden's R2: 0.121 McFadden's Adj R2: 0.072 Maximum Likelihood R2: 0.219 Cragg & Uhler's R2: 0.252 Count R2: 0.600 Adj Count R2: 0.158 AIC: 1.894 AIC*n: 378.774 BIC: -647.906 BIC': -7.032 prchange mlogit: Changes in Predicted Probabilities for prog read Avg|Chg| general vocation academic Min->Max .52036717 -.12611925 -.65443153 .78055075 -+1/2 .01433793 -.00555836 -.01594852 .02150691 -+sd/2 .14485034 -.0548842 -.16239132 .2172755 MargEfct .01433996 -.00556038 -.01594956 .02150994 female Avg|Chg| general vocation academic 0->1 .0420265 -.0426095 -.02043028 .06303972 ses1 Avg|Chg| general vocation academic 0->1 .1515191 .16208567 .065193 -.22727865 ses2 Avg|Chg| general vocation academic 0->1 .14467938 .04344329 .17357577 -.21701908 general vocation academic Pr(y|x) .24157889 .20947559 .54894555 read female ses1 ses2 x= 52.23 .545 .235 .475 sd(x)= 10.2529 .49922 .425063 .500628 prtab read female, x(ses1=0 ses2=1) mlogit: Predicted probabilities for prog Predicted probability of outcome 1 (general) -------------------------- reading | female score | male female ----------+--------------- 28 | 0.1699 0.1566 31 | 0.1884 0.1730 34 | 0.2064 0.1885 35 | 0.2122 0.1933 36 | 0.2177 0.1979 37 | 0.2230 0.2021 39 | 0.2327 0.2097 41 | 0.2409 0.2156 42 | 0.2443 0.2178 43 | 0.2472 0.2196 44 | 0.2496 0.2208 45 | 0.2514 0.2214 46 | 0.2527 0.2215 47 | 0.2533 0.2211 48 | 0.2533 0.2200 50 | 0.2515 0.2163 52 | 0.2471 0.2104 53 | 0.2441 0.2067 54 | 0.2405 0.2027 55 | 0.2364 0.1982 57 | 0.2268 0.1882 60 | 0.2097 0.1715 61 | 0.2034 0.1656 63 | 0.1903 0.1536 65 | 0.1768 0.1416 66 | 0.1700 0.1356 68 | 0.1565 0.1239 71 | 0.1369 0.1073 73 | 0.1245 0.0971 76 | 0.1072 0.0830 -------------------------- Predicted probability of outcome 3 (vocation) -------------------------- reading | female score | male female ----------+--------------- 28 | 0.7616 0.7589 31 | 0.7200 0.7146 34 | 0.6727 0.6639 35 | 0.6556 0.6456 36 | 0.6379 0.6267 37 | 0.6196 0.6071 39 | 0.5814 0.5662 41 | 0.5411 0.5235 42 | 0.5204 0.5016 43 | 0.4994 0.4795 44 | 0.4781 0.4572 45 | 0.4567 0.4348 46 | 0.4352 0.4125 47 | 0.4137 0.3903 48 | 0.3924 0.3684 50 | 0.3502 0.3256 52 | 0.3095 0.2848 53 | 0.2899 0.2654 54 | 0.2709 0.2467 55 | 0.2525 0.2288 57 | 0.2178 0.1954 60 | 0.1717 0.1518 61 | 0.1579 0.1390 63 | 0.1329 0.1159 65 | 0.1110 0.0961 66 | 0.1012 0.0873 68 | 0.0838 0.0717 71 | 0.0625 0.0530 73 | 0.0511 0.0431 76 | 0.0375 0.0314 -------------------------- Predicted probability of outcome 2 (academic) -------------------------- reading | female score | male female ----------+--------------- 28 | 0.0685 0.0845 31 | 0.0915 0.1124 34 | 0.1209 0.1476 35 | 0.1322 0.1611 36 | 0.1444 0.1755 37 | 0.1574 0.1908 39 | 0.1860 0.2241 41 | 0.2180 0.2609 42 | 0.2353 0.2806 43 | 0.2534 0.3010 44 | 0.2722 0.3221 45 | 0.2918 0.3437 46 | 0.3121 0.3660 47 | 0.3330 0.3886 48 | 0.3543 0.4116 50 | 0.3983 0.4582 52 | 0.4433 0.5048 53 | 0.4660 0.5279 54 | 0.4886 0.5506 55 | 0.5111 0.5730 57 | 0.5554 0.6164 60 | 0.6187 0.6767 61 | 0.6387 0.6954 63 | 0.6768 0.7305 65 | 0.7121 0.7624 66 | 0.7287 0.7771 68 | 0.7597 0.8044 71 | 0.8006 0.8397 73 | 0.8244 0.8599 76 | 0.8553 0.8857 -------------------------- read female ses1 ses2 x= 52.23 .545 0 1